Browse > Article
http://dx.doi.org/10.1007/s43188-020-00062-1

The in vitro toxicity evaluation of halloysite nanotubes (HNTs) in human lung cells  

Sawicka, Dorota (Central Institute for Labour Protection, National Research Institute)
Zapor, Lidia (Central Institute for Labour Protection, National Research Institute)
Chojnacka-Puchta, Luiza (Central Institute for Labour Protection, National Research Institute)
Miranowicz-Dzierzawska, Katarzyna (Central Institute for Labour Protection, National Research Institute)
Publication Information
Toxicological Research / v.37, no.3, 2021 , pp. 301-310 More about this Journal
Abstract
Halloysite nanotubes (HNTs) have been increasingly used in many industrial and biomedical fields. Therefore, the assessment of risk and consequences of exposure to HNTs is very important to better protect human safety. This study aims to investigate the short- (24 or 72 h) and long-term (7 days) cytotoxic effects of HNTs at doses 10-200 ㎍/mL on human alveolar carcinoma epithelial cells (A549) and human bronchial epithelial cells (BEAS-2B). The effect of HNTs on cell viability, apoptosis, cell proliferation, oxidative/antioxidative status and cell morphology was evaluated. Our results showed that cytotoxicity of HNTs is dependent on dose, cell model and time of exposure. During the time of exposition toxic effects were intensified. To the best of our knowledge, this is the first study to use holo-tomographic microscopy (HTM) to visualise changes in cell morphology due to exposure from HNTs. We observed cells contraction, changes in the size and shape, cell surface folding and cytoplasmic vacuolization, peripheral arrangement of cell nuclei and even increase number of nucleus, which undoubtedly confirmed cytotoxic effect of HNTs at low doses (5 ㎍/mL and 25 ㎍/mL). Our results demonstrated that HTM technique provides a new insight into the assessment of HNTs toxicity. Further studies with different cell models are recommended to assess the toxic effect of HNTs on whole human body.
Keywords
Cytotoxicity; Halloysite nanotubes; Holo-tomographic microscopy; Lung cells;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Santimano MC, Martin A, Kowshik M, Sarkar A (2013) Zinc oxide nanoparticles cause morphological changes in human a549 cell line through alteration in the expression pattern of small GTPases at mRNA level. J Bionanosci 7:300-306. https://doi.org/10.1166/jbns.2013.1134   DOI
2 Valentini X, Deneufbourg P, Paci P, Rugira P, Laurent S, Frau A, Stanicki D, Ris L, Nonclercq D (2018) Morphological alterations induced by the exposure to TiO2 nanoparticles in primary cortical neuron cultures and in the brain of rats. Toxicol Rep 5:878-889. https://doi.org/10.1016/j.toxrep.2018.08.006   DOI
3 Herzog E, Casey A, Lyng FM, Chambers G, Byrne HJ, Davoren M (2007) A new approach to the toxicity testing of carbon-based nanomaterials-the clonogenic assay. Toxicol Lett 174:49-60. https://doi.org/10.1016/j.toxlet.2007.08.009   DOI
4 Franken N, Rodermond HM, Stap J, Haverman J, van Bree C (2006) Clonogenic assay of cells in virto. Nat Protoc 1:2315-2319. https://doi.org/10.1038/nprot.2006.339   DOI
5 Rawtani D, Agrawal YK (2012) Multifarious applications of halloysite nanotubes: a review. Rev Adv Mater Sci 30:282-295
6 Hillegass JM, Shukla A, Lathrop SA, MacPherson MB, Fukagawa NK, Mossman BT (2010) Assessing nanotoxicity in cells in vitro. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2:219-231. https://doi.org/10.1002/wnan.54   DOI
7 Jaurand MC (2017) An overview on the safety of tubular clay minerals. Dev Clay Sci 7:485-508. https://doi.org/10.1016/B978-0-08-100293-3.00020-0   DOI
8 Sooklert K, Wongjarupong A, Cherdchom S, Wongjarupong N, Jindatip D, Phungnoi Y, Rojanathanes R, Sereemaspun A (2019) Molecular and morphological evidence of hepatotoxicity after silver nanoparticle exposure: a systematic review, in silico, and ultrastructure investigation. Toxicol Res 35:257-270. https://doi.org/10.5487/TR.2019.35.3.257   DOI
9 Yuan P, Tan D, Annabi-Bergaya F (2015) Properties and applications of halloysite nanotubes: recent research advances and future prospects. Appl Clay Sci 112-113:75-93. https://doi.org/10.1016/j.clay.2015.05.001   DOI
10 Zhang Y, Tang A, Yang H, Ouyang J (2016) Applications and interfaces of halloysite nanocomposites. Appl Clay Sci 119:8-17. https://doi.org/10.1016/j.clay.2015.06.034   DOI
11 Martin A, Sarkar A (2019) Epithelial to mesenchymal transition, eIF2α phosphorylation and Hsp70 expression enable greater tolerance in A549 cells to TiO2. Sci Rep 9:436. https://doi.org/10.1038/s41598-018-36716-2   DOI
12 Schaeublin NM, Braydich-Stolle LK, Schrand AM, Miller JM, Hutchison J, Schlager JJ, Hussain SM (2011) Surface charge of gold nanoparticles mediates mechanism of toxicity. Nanoscale 3:410-420. https://doi.org/10.1039/c0nr00478b   DOI
13 Plascencia-Villa G, Starr CR, Armstrong LS, Ponce A, Jose-Yacaman M (2012) Imaging interactions of metal oxide nanoparticles with macrophage cells by ultra-high resolution scanning electron microscopy techniques. Integr Biol (Camb) 4:1358-1366. https://doi.org/10.1039/c2ib20172k   DOI
14 Srikanth K, Pereira E, Duarte AC, Rao JV (2016) Evaluation of cytotoxicity, morphological alterations and oxidative stress in Chinook salmon cells exposed to copper oxide nanoparticles. Protoplasma 253:873-884. https://doi.org/10.1007/s00709-015-0849-7   DOI
15 Puck TT, Markus PI (1956) Action of X-rays on mammalian cells. J Exp Med 103:653-666. https://doi.org/10.1084/jem.103.5.653   DOI
16 Kruszewski M, Gradzka I, Bartlomierczyk T, Chwastowska J, Sommer S et al (2013) Oxidative DNA damage corresponds to the long term survival of human cells treated with silver nanoparticles. Toxicol Lett 219:151-159. https://doi.org/10.1016/j.toxlet.2013.03.006   DOI
17 Gaaz TS, Sulong AB, Akhtar MN, Raza MR (2015) Morphology and tensile properties of thermoplastic polyurethane-halloysite nanotube nanocomposites. Int J Automot Mech Eng 12:2844-2856. https://doi.org/10.15282/ijame.12.2015.4.0239   DOI
18 Kelly H, Deasy P, Ziaka E, Claffey N (2004) Formulation and preliminary in vivo dog studies of a novel drug delivery system for the treatment of periodontitis. Int J Pharm 274:167-183. https://doi.org/10.1016/j.ijpharm.2004.01.019   DOI
19 Bhabra G, Sood A, Fisher B et al (2009) Nanoparticles can cause DNA damage across a cellular barrier. Nature Nanotech 4:876-883. https://doi.org/10.1038/nnano.2009.313   DOI
20 Weeks SE, Metge BJ, Samant RS (2019) The nucleolus: a central response hub for the stressors that drive cancer progression. Cell Mol Life Sci 76:4511-4524. https://doi.org/10.1007/s00018-019-03231-0   DOI
21 Kommireddy D, Ichinose I, Lvov YM, Mills D (2005) Nanoparticle multilayer: surface modification for cell attachment and growth. J Biomed Nanotechnol 1:286-290. https://doi.org/10.1166/jbn.2005.046   DOI
22 Shi YF, Tian Z, Zhang Y, Shen HB, Jia NQ (2011) Functionalized halloysite nanotube-based carrier for intracellular delivery of antisense oligonucleotides. Nanoscale Res Lett 6:608-614. https://doi.org/10.1186/1556-276X-6-608   DOI
23 Vergaro V, Lvov YM, Leporatti S (2012) Halloysite clay nanotubes for resveratrol delivery to cancer cells. Macromol Biosci 12:1265-1271. https://doi.org/10.1002/mabi.201200121   DOI
24 Chiriaco F, Conversano F, Sbenaglia EA, ciaro S, Leporatti S, Lay-Ekuakille A (2014) Cytotoxicity measurements of Halloysite Nanotubes for nanomedicine applications. In: IEEE international symposium on medical measurements and applications (MeMeA), pp 1-4. https://doi.org/10.1109/MeMeA.2014.6860126   DOI
25 Casey A, Herzog E, Davoren M, Lyng FM, Byrne HJ, Chambers G (2007) Spectroscopic analysis confirms the interactions between single walled carbon nanotubes and various dyes commonly used to assess cytotoxicity. Carbon 45:1425-1432. https://doi.org/10.1016/j.carbon.2007.03.033   DOI
26 Hughes AD, Mattinson J, Powderly JD, Greene BT, King MR (2012) Rapid isolation of viable circulating tumor cells from patient blood samples. J Vis Exp 64:4248. https://doi.org/10.3791/4248   DOI
27 Kamble R, Ghag M, Gaikawad S, Panda BK (2012) Halloysite nanotubes and applications: a review. J Adv Sci Res 3:25-29
28 Hempel SL, Buettner GR, O'Malley YQ, Wessels DA, Flaherty DM (1999) Dihydrofluorescein diacetate is superior for detecting intracellular oxidants: comparison with 2,7-dichlorodihydrofluorescein diacetate, 5(and 6)-carboxy-2,7-dichlorodihydrofluorescein diacetate, and dihydrorhodamine 123. Free Radic Biol Med 27:146-159. https://doi.org/10.1016/s0891-5849(99)00061-1   DOI
29 Koivisto AJ, Bluhme AB, Kling KI et al (2018) Occupational exposure during handling and loading of halloysite nanotubes-a case study of counting nanofibers. NanoImpact 10:153-160. https://doi.org/10.1016/j.impact.2018.04.003   DOI
30 Satish S, Tharmavaram M, Rawtani D (2019) Halloysite nanotubes as a nature's boon for biomedical applications. Nanobiomedicine 6:1-16. https://doi.org/10.1177/1849543519863625   DOI
31 Lu X, Qian J, Zhou H et al (2011) In vitro cytotoxicity and induction of apoptosis by silica nanoparticles in human HepG2 hepatoma cells. Int J Nanomed 6:1889-1901. https://doi.org/10.2147/IJN.S24005   DOI
32 Saber AT, Lamson JS, Jacobsen NR, Ravn-Haren G et al (2013) Particle-induced pulmonary acute phase response correlates with neutrophil influx linking inhaled particles and cardiovascular risk. PLoS ONE e69020:20138. https://doi.org/10.1371/journal.pone.0069020   DOI
33 Poulsen SS, Saber AT, Williams A et al (2015) MWCNTs of different physicochemical properties cause similar inflammatory responses, but differences in transcriptional and histological markers of fibrosis in mouse lungs. Toxicol Appl Pharmacol 284:16-32. https://doi.org/10.1016/j.taap.2014.12.011   DOI
34 Montes-Burgos I, Walczyk D, Hole P, Smith J, Lynch I, Dawson K (2010) Characterisation of nanoparticle size and state prior to nanotoxicological studies. J Nanopart Res 12:47-53. https://doi.org/10.1007/s11051-009-9774-z   DOI
35 Lanone S, Rogerieux F, Geys J, Boczkowski J, Lacroix G, Dupont A, Maillot-Marechal E, Hoet P (2009) Comparative toxicity 27 manufactured nanomaterials in human alveolar epithelial and macrophage cell lines. Part Fibre Toxicol 6:14. https://doi.org/10.1186/1743-8977-6-14   DOI
36 Cho W-S, Duffin R, Bradley M et al (2013) Predictive value of in vitro assays depends on the mechanism of toxicity of metal oxide nanoparticles. Part Fibre Toxicol 10:55. https://doi.org/10.1186/1743-8977-10-55   DOI
37 Souza TA, Franchi LP, Rosa LR, da Veiga MA, Takahashi CS (2016) Cytotoxicity and genotoxicity of silver nanoparticles of different sizes in CHO-K1 and CHO-XRS5 cell lines. Mutat Res Genet 795:70-83. https://doi.org/10.1016/j.mrgentox.2015.11.002   DOI
38 Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55-63. https://doi.org/10.1016/0022-1759(83)90303-4   DOI
39 Sood A, Salih S, Roh D et al (2011) Signalling of DNA damage and cytokines across cell barriers exposed to nanoparticles depends on barrier thickness. Nat Nanotechnol 6:824-833. https://doi.org/10.1038/nnano.2011.188   DOI
40 Jakubowski W, Bartosz G (2000) 2,7-dichlorofluorescin oxidation and reactive oxygen species: what does it measure? Cell Biol Int 24:757-760. https://doi.org/10.1006/cbir.2000.0556   DOI
41 Bahadar H, Maqbool F, Niaz K, Abdollahi M (2016) Toxicity of nanoparticles and an overview of current experimental models. Iran Biomed J 20:1-11. https://doi.org/10.7508/ibj.2016.01.001   DOI
42 Zhang XD, Wu D, Shen X, Chen J, Sun YM, Liu PX, Liang XJ (2012) Size-dependent radiosensitization of PEG-coated gold nanoparticles for cancer radiation therapy. Biomaterials 33:6408-6419. https://doi.org/10.1016/j.biomaterials.2012.05.047   DOI
43 Ponti J, Colognato R, Rauscher H, Gioria S, Broggi F, Franchini F, Pascual C, Giudetti G, Rossi F (2010) Colony forming efficiency and microscopy analysis of multi-wall carbon nanotubes cell interaction. Toxicol Lett 197:29-37. https://doi.org/10.1016/j.toxlet.2010.04.018   DOI
44 Ahmed FR, Shoaib MH, AzharM, Um SH, Yousuf RI, Hasmi S, Dar A (2015) In-vitro assessment of cytotoxicity of halloysite nanotubes against HepG2, HCT116 and human peripheral blood lymphocytes. Colloids Surf B 135:50-55. https://doi.org/10.1016/j.colsurfb.2015.07.021   DOI
45 Verma NK, Moore E, Blau W, Volkov Y, Babu PR (2012) Cytotoxicity evaluation of nanoclays in human epithelial cell line A549 using high content screening and real-time impedance analysis. J Nanopart Res 14:1137. https://doi.org/10.1007/s11051-012-1137-5   DOI
46 Lai X, Agarwal M, Lvov YM, Pachpande C, Varahramyan K, Witzmann FA (2013) Proteomic profiling of Halloysite clay nanotube exposure in intestinal cell co-culture. J Appl Toxicol 33:1316-1329. https://doi.org/10.1002/jat.2858   DOI
47 Rim KT, Song SW, Kim HY (2013) Oxidative DNA damage from nanoparticle exposure and its application to workers' health: a literature review. Saf Health Work 4:177-186. https://doi.org/10.1016/j.shaw.2013.07.006   DOI
48 Luo P, Zhao Y, Zhang B, Liu J, Yang Y, Liu J (2010) Study on the adsorption of Neutral Red from aqueous solution onto halloysite nanotubes. Water Res 44:1489-1497. https://doi.org/10.1016/j.watres.2009.10.042   DOI
49 Vergaro V, Abdullayev E, Lvov YM, Zeitoun A, Cingolani R, Rinaldi R, Leporatti S (2010) Cytocompatibility and uptake of Halloysite clay nanotubes. Biomacromol 11:820-826. https://doi.org/10.1021/bm9014446   DOI
50 Monteiro-Riviere NA, Nemanich RJ, Inman AO, Wang YY, Riviere JE (2005) Multi-walled carbon nanotube interactions with human epidermal keratinocytes. Toxicol Lett 155:377-384. https://doi.org/10.1016/j.toxlet.2004.11.004   DOI
51 Xia T, Kovochich M, Liong M, Zink JI, Nel AE (2008) Cationic polystyrene nanosphere toxicity depends on cell-specific endocytic and mitochondrial injury pathways. ACS Nano 1:85-96. https://doi.org/10.1021/nn700256c   DOI
52 Garcia de la Cadena S, Massieu L (2016) Caspases and their role in inflammation and ischemic neuronal death. Focus on caspase-12. Apoptosis 21:763-777. https://doi.org/10.1007/s10495-016-1247-0   DOI
53 Liu HY, Du L, Zhao YT, Tian WQ (2015) In vitro hemocompatibility and cytotoxicity evaluation of halloysite nanotubes for biomedical application. J Nanomater 2:1-9. https://doi.org/10.1155/2015/685323   DOI
54 Chen Q, Wang N, Zhu M, Lu J, Zhong H, Xue X, Guo S, Li M, Wei X, Tao Y, Yin H (2018) TiO2 nanoparticles cause mitochondrial dysfunction, activate inflammatory responses, and attenuate phagocytosis in macrophages: a proteomic and metabolomic insight. Redox Biol 15:266-276. https://doi.org/10.1016/j.redox.2017.12.011   DOI
55 Fu PP, Xia Q, Hwang HM, Ray PC, Yu H (2014) Mechanisms of nanotoxicity: generation of reactive oxygen species. J Food Drug Anal 22:64-75. https://doi.org/10.1016/j.jfda.2014.01.005   DOI
56 Lyakhovich VV, Vavilin VA, Zenkov NK, Menshchikova EB (2006) Active defense under oxidative stress. The antioxidant responsive element. Biochemistry-Moscow 71:962-974. https://doi.org/10.1134/s0006297906090033   DOI