Browse > Article
http://dx.doi.org/10.5487/TR.2018.34.1.065

Pretreatment of Low-Dose and Super-Low-Dose LPS on the Production of In Vitro LPS-Induced Inflammatory Mediators  

Chae, Byeong Suk (College of Pharmacy, Woosuk University)
Publication Information
Toxicological Research / v.34, no.1, 2018 , pp. 65-73 More about this Journal
Abstract
Pretreatment of low-dose lipopolysaccharide (LPS) induces a hyporesponsive state to subsequent secondary challenge with high-dose LPS in innate immune cells, whereas super-low-dose LPS results in augmented expression of pro-inflammatory cytokines. However, little is known about the difference between super-low-dose and low-dose LPS pretreatments on immune cell-mediated inflammatory and hepatic acute-phase responses to secondary LPS. In the present study, RAW 264.7 cells, EL4 cells, and Hepa-1c1c7 cells were pretreated with super-low-dose LPS (SL-LPS: 50 pg/mL) or low-dose LPS (L-LPS: 50 ng/mL) in fresh complete medium once a day for 2~3 days and then cultured in fresh complete medium for 24 hr or 48 hr in the presence or absence of LPS ($1{\sim}10{\mu}g/mL$) or concanavalin A (Con A). SL-LPS pretreatment strongly enhanced the LPS-induced production of tumor necrosis factor (TNF)-${\alpha}$, interleukin (IL)-6, TNF-${\alpha}$/IL-10, prostaglandin E2 ($PGE_2$), and nitric oxide (NO) by RAW 264.7 cells compared to the control, whereas L-LPS increased IL-6 and NO production only. SL-LPS strongly augmented the Con A-induced ratios of interferon (IFN)-${\gamma}$/IL-10 in EL4 cells but decreased the LPS-induced ratios of IFN-${\gamma}$/IL-10 compared to the control, while L-LPS decreased the Con A- and LPS-induced ratios of IFN-${\gamma}$/IL-10. SL-LPS enhanced the LPS-induced production of IL-6 by Hepa1c1c-7 cells compared to the control, while L-LPS increased IL-6 but decreased IL-$1{\beta}$ and C reactive protein (CRP) levels. SL-LPS pretreatment strongly enhanced the LPS-induced production of TNF-${\alpha}$, IL-6, IL-10, $PGE_2$, and NO in RAW 264.7 cells, and the IL-6, IL-$1{\beta}$, and CRP levels in Hepa1c1c-7 cells, as well as the ratios of IFN-${\gamma}$/IL-10 in LPS- and Con A-stimulated EL4 cells compared to L-LPS. These findings suggest that pre-conditioning of SL-LPS may contribute to the mortality to secondary infection in sepsis rather than pre-conditioning of L-LPS.
Keywords
Endotoxin pretreatment; Proinflammatory cytokines; Prostaglandin $E_2$; Nitric oxide; Acute-phase protein;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kox, W.J., Volk, T., Kox, S.N. and Volk, H.D. (2000) Immunomodulatory therapies in sepsis. Intensive Care Med., 26, S124-S128.
2 Boutagy, N.E., McMillan, R.P., Frisard, M.I. and Hulver, M.W. (2016) Metabolic endotoxemia with obesity: is it real and is it relevant? Biochimie, 124, 11-20.   DOI
3 Hietbrink, F., Besselink, M.G., Renooij, W., de Smet, M.B., Draisma, A., van der Hoeven, H. and Pickkers, P. (2009) Systemic inflammation increases intestinal permeability during experimental human endotoxemia. Shock, 32, 374-378.
4 Cani, P.D., Amar, J., Iglesias, M.A., Poggi, M., Knauf, C., Bastelica, D., Neyrinck, A.M., Fava, F., Tuohy, K.M. and Chabo, C. (2007) Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes, 56, 1761-1772.   DOI
5 Tarasenko, T.N. and McGuire, P.J. (2017) The liver is a metabolic and immunologic organ: a reconsideration of metabolic decompensation due to infection in inborn errors of metabolism (IEM). Mol. Genet. Metab., 121, 283-288.
6 Dhainaut, J.F., Marin, N., Mignon, A. and Vinsonneau, C. (2001) Hepatic response to sepsis: interaction between coagulation and inflammatory processes. Crit. Care Med., 29, S42-S47.   DOI
7 Maitra, U., Gan, L., Chang, S. and Li, L. (2011) Low-dose endotoxin induces inflammation by selectively removing nuclear receptors and activating CCAAT/enhancer-binding protein $\delta$. J. Immunol., 186, 4467-4473.   DOI
8 Aggarwal, N.R., Tsushima, K., Eto, Y., Tripathi, A., Mandke, P., Mock, J.R., Garibaldi, B.T., Singer, B.D., Sidhaye, V.K., Horton, M.R., King, L.S. and D'Alessio, F.R. (2014) Immunological priming requires regulatory T cells and IL-10-producing macrophages to accelerate resolution from severe lung inflammation. J. Immunol., 192, 4453-4464.   DOI
9 Pradhan, A.D., Manson, J.E., Rifai, N., Buring, J.E. and Ridker, P.M. (2001) C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA, 286, 327-334.
10 Zhou, F., Ciric, B., Li, H., Yan, Y., Li, K., Cullimore, M., Lauretti, E., Gonnella, P., Zhang, G.X. and Rostami, A. (2012) IL-10 deficiency blocks the ability of LPS to regulate expression of tolerance-related molecules on dendritic cells. Eur. J. Immunol., 42, 1449-1458.   DOI
11 Kalinski, P. (2012) Regulation of immune responses by prostaglandin E2. J. Immunol., 188, 21-28.   DOI
12 Fernando, L.P., Fernando, A.N., Ferlito, M., Halushka, P.V. and Cook, J.A. (2000) Suppression of Cox-2 and TNF-alpha mRNA in endotoxin tolerance: effect of cycloheximide, antinomycin D, and okadaic acid. Shock, 14, 128-133.   DOI
13 Ando, K. and Fujita, T. (2009) Metabolic syndrome and oxidative stress. Free Radic. Biol. Med., 47, 213-218.   DOI
14 Hotamisligil, G.S. (2006) Inflammation and metabolic disorders. Nature, 444, 860-867.   DOI
15 Kumar, S. and Adhikari, A. (2017) Dose-dependent immunomodulating effects of endotoxin in allergic airway inflammation. Innate Immun., 23, 249-257.   DOI
16 Matsushita, H., Ohta, S., Shiraishi, H., Suzuki, S., Arima, K., Toda, S., Tanaka, H., Nagai, H., Kimoto, M., Inokuchi, A. and Izuhara, K. (2010) Endotoxin tolerance attenuates airway allergic inflammation in model mice by suppression of the T-cell stimulatory effect of dendritic cells. Int. Immunol., 22, 739-747.
17 Chae, B.S. (2002) Comparative study of the endotoxemia and endotoxin tolerance on the production of Th cytokines and macrophage interleukin-6: differential regulation of indomethacin. Arch. Pharm. Res., 25, 910-916.   DOI
18 Saad, B., Frei, K., Scholl, F.A., Fontana, A. and Maier, P. (1995) Hepatocyte-derived interleukin-6 and tumor-necrosis factor alpha mediate the lipopolysaccharide-induced acutephase response and nitric oxide release by cultured rat hepatocytes. Eur. J. Biochem., 229, 349-355.   DOI
19 Poujol, F., Monneret, G., Gallet-Gorius, E., Pachot, A., Textoris, J. and Venet, F. (2017) Ex vivo Stimulation of Lymphocytes with IL-10 mimics sepsis-induced intrinsic T-cell alterations. Immunol. Invest., 28, 1-15.
20 Bauer, M., Press, A.T. and Trauner, M. (2013) The liver in sepsis: patterns of response and injury. Curr. Opin. Crit. Care., 19, 123-127.
21 Panesar, N., Tolman, K. and Mazuski, J. E. (1999) Endotoxin stimulates hepatocyte interleukin-6 production. J. Surg. Res., 85, 251-258.   DOI
22 Mohamed, J., Nazratun Nafizah, A.H., Zariyantey, A.H. and Budin, S.B. (2016) Mechanisms of diabetes-induced liver damage: the role of oxidative stress and inflammation. J. Sultan Qaboos Univ. Med., 16, e132-e141.   DOI
23 Nakasone, M., Nakaso, K., Horikoshi, Y., Hanaki, T., Kitagawa, Y., Takahashi, T., Inagaki, Y. and Matsura, T. (2016) Preconditioning by low dose LPS prevents subsequent LPS-induced severe liver injury via Nrf2 activation in mice. Yonago Acta Med., 59, 223-231.
24 Dupuy, A.M., Terrier, N., Senecal, L., Morena, M., Leray, H., Canaud, B. and Cristol, J.P. (2003) Is C-reactive protein a marker of inflammation? Nephrologie, 24, 337-341.
25 Ridker, P.M. and Morrow, D.A. (2003) C-reactive protein, inflammation, and coronary risk. Cardiol. Clin., 21, 315-325.   DOI
26 Offenbacher, S. and Salvi, G.E. (1999) Induction of prostaglandin release from macrophages by bacterial endotoxin. Clin. Infect. Dis., 28, 505-513.   DOI
27 Kramer, F., Torzewski, J., Kamenz, J., Veit, K., Hombach, V., Dedio, J. and Ivashchenko, Y. (2008) Interleukin-1beta stimulates acute phase response and C-reactive protein synthesis by inducing an NFkappaB- and C/EBPbeta-dependent autocrine interleukin-6 loop. Mol. Immunol., 45, 2678-2689.   DOI
28 Heymann, F. and Tacke, F. (2016) Immunology in the liver--from homeostasis to disease. Nat. Rev. Gastroenterol. Hepatol., 13, 88-110.
29 Alexander, C. and Rietschel, E.T. (2001) Bacterial lipopolysaccharides and innate immunity. J. Endotoxin Res., 7, 167-202.
30 Patel, P.N., Shah, R.Y., Ferguson, J.F. and Reilly, M.P. (2015) Human experimental endotoxemia in modeling the pathophysiology, genomics, and therapeutics of innate immunity in complex cardiometabolic diseases. Arterioscler. Thromb. Vasc. Biol., 35, 525-534.
31 Kawai, T. and Akira, S. (2007) Signaling to NF-kappaB by Toll-like receptors. Trends Mol. Med., 13, 460-469.   DOI
32 Maitra, U., Gan, L., Chang, S. and Li, L. (2011) Low-dose endotoxin induces inflammation by selectively removing nuclear receptors and activating CCAAT/enhancer-binding protein $\delta$. J. Immunol., 186, 4467-4473.   DOI
33 Biswas, S.K. and Lopez-Collazo, E. (2009) Endotoxin tolerance: new mechanisms, molecules and clinical significance. Trends Immunol., 30, 475-487.   DOI
34 Cheng, S.C., Scicluna, B.P., Arts, R.J., Gresnigt, M.S., Lachmandas, E., Giamarellos-Bourboulis, E.J., Kox, M., Manjeri, G.R., Wagenaars, J.A., Cremer, O.L., Leentjens, J., van der Meer, A.J., van de Veerdonk, F.L., Bonten, M.J., Schultz, M.J., Willems, P.H., Pickkers, P., Joosten, L.A., van der Poll, T. and Netea, M.G. (2016) Broad defects in the energy metabolism of leukocytes underlie immunoparalysis in sepsis. Nat. Immunol., 17, 406-413.   DOI
35 Deng, H., Maitra, U., Morris, M. and Li, L. (2013) Molecular mechanism responsible for the priming of macrophage activation. J. Biol. Chem., 288, 3897-3906.
36 Chen, K., Geng, S., Yuan, R., Diao, N., Upchurch, Z. and Li, L. (2015) Super-low dose endotoxin pre-conditioning exacerbates sepsis mortality. EBioMedicine, 2, 324-333.
37 Morris, M. and Li, L. (2012) Molecular mechanisms and pathological consequences of endotoxin tolerance and priming. Arch. Immunol. Ther. Exp. (Warsz), 60, 13-18.   DOI
38 Romagnani, S. (2000) T-cell subsets (Th1 versus Th2). Ann. Allergy Asthma Immunol., 85, 9-18.   DOI
39 Balkhy, H.H. and Heinzel, F.P. (1999) Endotoxin fails to induce IFN-gamma in endotoxin-tolerant mice: deficiencies in both IL-12 heterodimer production and IL-12 responsiveness. J. Immunol., 162, 3633-3638.
40 Heinzel, F.P. (1990) The role of IFN-gamma in the pathology of experimental endotoxemia. J. Immunol., 145, 2920-2924.