Browse > Article
http://dx.doi.org/10.5487/TR.2017.33.4.325

Anti-Inflammatory Effect of 3-Bromo-4,5-Dihydroxybenzaldehyde, a Component of Polysiphonia morrowii, In Vivo and In Vitro  

Kang, Na-Jin (Department of Medicine, School of Medicine, Jeju National University)
Han, Sang-Chul (Department of Medicine, School of Medicine, Jeju National University)
Kang, Hyun-Jae (Department of Medicine, School of Medicine, Jeju National University)
Ko, Geum (Department of Medicine, School of Medicine, Jeju National University)
Yoon, Weon-Jong (Jeju Biodiversity Research Institute (JBRI), Jeju Technopark (JTP))
Kang, Hee-Kyoung (Department of Medicine, School of Medicine, Jeju National University)
Yoo, Eun-Sook (Department of Medicine, School of Medicine, Jeju National University)
Publication Information
Toxicological Research / v.33, no.4, 2017 , pp. 325-332 More about this Journal
Abstract
3-Bromo-4,5-dihydroxybenzaldehyde (BDB) is a natural bromophenol compound that is most commonly isolated from red algae. The present study was designed to investigate the anti-inflammatory properties of BDB on atopic dermatitis (AD) in mice induced by 2,4-dinitrochlorobenzene (DNCB) and on lipopolysaccharide (LPS)-stimulated murine macrophages. BDB treatment (100 mg/kg) resulted in suppression of the development of AD symptoms compared with the control treatment (induction-only), as demonstrated by reduced immunoglobulin E levels in serum, smaller lymph nodes with reduced thickness and length, a decrease in ear edema, and reduced levels of inflammatory cell infiltration in the ears. In RAW 264.7 murine macrophages, BDB (12.5, 25, 50, and $100{\mu}M$) suppressed the production of interleukin-6, a proinflammatory cytokine, in a dose-dependent manner. BDB also had an inhibitory effect on the phosphorylation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-${\kappa}B$) and signal transducer and activator of transcription 1 (STAT1; Tyr 701), two major signaling molecules involved in cellular inflammation. Taken together, the results show that BDB treatment alleviates inflammatory responses in an atopic dermatitis mouse model and RAW 264.7 macrophages. These results suggest that BDB may be a useful therapeutic strategy for treating conditions involving allergic inflammation such as atopic dermatitis.
Keywords
3-Bromo-4,5-dihydroxybenzaldehyde; Inflammation; Atopic dermatitis; 2,4-Dinitrochlorobenzene; Immunoglobulin E; Interleukin-6;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Li, C., Lasse, S., Lee, P., Nakasaki, M., Chen, S.W., Yamasaki, K., Gallo, R.L. and Jamora, C. (2010) Development of atopic dermatitis-like skin disease from the chronic loss of epidermal caspase-8. Proc. Natl. Acad. Sci. U.S.A., 107, 22249-22254.   DOI
2 Nystad, W., Roysamb, E., Magnus, P., Tambs, K. and Harris, J.R. (2005) A comparison of genetic and environmental variance structures for asthma, hay fever and eczema with symptoms of the same diseases: a study of Norwegian twins. Int. J. Epidemiol., 34, 1302-1309.   DOI
3 Kawakami, T., Ando, T., Kimura, M., Wilson, B.S. and Kawakami, Y. (2009) Mast cells in atopic dermatitis. Curr. Opin. Immunol., 21, 666-678.   DOI
4 Kitamura, Y. and Ito, A. (2005) Mast cell-committed progenitors. Proc. Natl. Acad. Sci. U.S.A., 102, 11129-11130.   DOI
5 Glimcher, L.H. and Murphy, K.M. (2000) Lineage commitment in the immune system: The T helper lymphocyte grows up. Genes Dev., 14, 1693-1711.
6 Ouyang, W., Ranganath, S.H., Weindel, K., Bhattacharya, D., Murphy, T.L., Sha, W.C. and Murphy, K.M. (1998) Inhibition of Th1 development mediated by GATA-3 through an IL-4-independent mechanism. Immunity, 9, 745-755.   DOI
7 Romagnani, S. (2000) The role of lymphocytes in allergic disease. J. Allergy Clin. Immunol., 105, 399-408.   DOI
8 Elson, C.O., Cong, Y., Brandwein, S., Weaver, C.T., McCabe, R.P., Mahler, M., Sundberg, J.P. and Leiter, E.H. (1998) Experimental models to study molecular mechanisms underlying intestinal inflammation. Ann. N. Y. Acad. Sci., 859, 85-95.   DOI
9 Tanaka, T., Narazaki, M. and Kishimoto, T. (2014) IL-6 in inflammation, immunity, and disease. Cold Spring Harb. Perspect. Biol., 6, a016295.   DOI
10 Barnes, T.C., Anderson, M.E. and Moots, R.J. (2011) The many faces of interleukin-6: the role of IL-6 in inflammation, vasculopathy, and fibrosis in systemic sclerosis. Int. J. Rheumatol., 2011, 721608.
11 Kaplan, M.H. (2013) STAT signaling in inflammation. JAKSTAT, 2, e24198.
12 Wan, J., Shan, Y., Fan, Y., Fan, C., Chen, S., Sun, J., Zhu, L., Qin, L., Yu, M. and Lin, Z. (2016) $NF-{\kappa}B$ inhibition attenuates LPS-induced TLR4 activation in monocyte cells. Mol. Med. Rep., 14, 4505-4510.   DOI
13 Kang, N.J., Han, S.C., Kang, G.J., Koo, D.H., Koh, Y.S., Hyun, J.W., Lee, N.H., Ko, M.H., Kang, H.K. and Yoo, E.S. (2015) Diphlorethohydroxycarmalol inhibits interleukin-6 production by regulating $NF-{\kappa}B$, STAT5 and SOCS1 in lipopolysaccharide-stimulated RAW264.7 cells. Mar. Drugs, 13, 2141-2157.   DOI
14 Gorina, R., Font-Nieves, M., Marquez-Kisinousky, L., Santalucia, T. and Planas, A.M. (2011) Astrocyte TLR4 activation induces a proinflammatory environment through the interplay between MyD88-dependent $NF{\kappa}B$ signaling, MAPK, and Jak1/Stat1 pathways. Glia, 59, 242-255.   DOI
15 Chae, D., Manzoor, Z., Kim, S.C., Kim, S., Oh, T.H., Yoo, E.S., Kang, H.K., Hyun, J.W., Lee, N.H., Ko, M.H. and Koh, Y.S. (2013) Apo-9'-fucoxanthinone, isolated from Sargassum muticum, inhibits CpG-induced inflammatory response by attenuating the mitogen-activated protein kinase pathway. Mar. Drugs, 11, 3272-3287.   DOI
16 Han, S.C., Kang, G.J., Ko, Y.J., Kang, H.K., Moon, S.W., Ann, Y.S. and Yoo, E.S. (2012) External application of fermented olive flounder (Paralichthys olivaceus) oil alleviates inflammatory responses in 2,4-dinitrochlorobenzeneinduced atopic dermatitis mouse model. Toxicol. Res., 28, 159-164.   DOI
17 Cho, B.O., Yin, H.H., Park, S.H., Byun, E.B., Ha, H.Y. and Jang, S.I. (2016) Anti-inflammatory activity of myricetin from Diospyros lotus through suppression of $NF-{\kappa}B$ and STAT1 activation and Nrf2-mediated HO-1 induction in lipopolysaccharide- stimulated RAW264.7 macrophages. Biosci. Biotechnol. Biochem., 80, 1520-1530.   DOI
18 Singer, P.A., McEvilly, R.J., Noonan, D.J., Dixon, F.J. and Theofilopoulos, A.N. (1986) Clonal diversity and T-cell receptor beta-chain variable gene expression in enlarged lymph nodes of MRL-lpr/lpr lupus mice. Proc. Natl. Acad. Sci. U.S.A., 83, 7018-7022.   DOI
19 Choi, E.Y., Jin, J.Y., Choi, J.I., Choi, I.S. and Kim, S.J. (2014) Effect of azithromycin on Prevotella intermedia lipopolysaccharide-induced production of interleukin-6 in murine macrophages. Eur. J. Pharmacol., 729, 10-16.   DOI
20 Luu, K., Greenhill, C.J., Majoros, A., Decker, T., Jenkins, B.J. and Mansell, A. (2014) STAT1 plays a role in TLR signal transduction and inflammatory responses. Immunol. Cell Biol., 92, 761-769.   DOI
21 Kasraie, S. and Werfel, T. (2013) Role of macrophages in the pathogenesis of atopic dermatitis. Mediators Inflamm., 2013, 942375.
22 Mirza, R., DiPietro, L.A. and Koh, T.J. (2009) Selective and specific macrophage ablation is detrimental to wound healing in mice. Am. J. Pathol., 175, 2454-2462.   DOI
23 Novak, N., Bieber, T. and Leung, D.Y. (2003) Immune mechanisms leading to atopic dermatitis. J. Allergy Clin. Immunol., 112, S128-S139.   DOI
24 Vestergaard, C., Just, H., Baumgartner Nielsen, J., Thestrup-Pedersen, K. and Deleuran, M. (2004) Expression of CCR2 on monocytes and macrophages in chronically inflamed skin in atopic dermatitis and psoriasis. Acta Derm. Venereol., 84, 353-358.   DOI
25 Akira, S. and Takeda, K. (2004) Toll-like receptor signalling. Nat. Rev. Immunol., 4, 499-511.   DOI
26 Okiyama, N., Sugihara, T., Iwakura, Y., Yokozeki, H., Miyasaka, N. and Kohsaka, H. (2009) Therapeutic effects of interleukin-6 blockade in a murine model of polymyositis that does not require interleukin-17A. Arthritis Rheum., 60, 2505-2512.   DOI
27 Fujimoto, M., Serada, S., Mihara, M., Uchiyama, Y., Yoshida, H., Koike, N., Ohsugi, Y., Nishikawa, T., Ripley, B., Kimura, A., Kishimoto, T. and Naka, T. (2008) Interleukin-6 blockade suppresses autoimmune arthritis in mice by the inhibition of inflammatory Th17 responses. Arthritis Rheum., 58, 3710-3719.   DOI
28 Alonzi, T., Fattori, E., Lazzaro, D., Costa, P., Probert, L., Kollias, G., De Benedetti, F., Poli, V. and Ciliberto, G. (1998) Interleukin 6 is required for the development of collageninduced arthritis. J. Exp. Med., 187, 461-468.   DOI
29 Caiello, I., Minnone, G., Holzinger, D., Vogl, T., Prencipe, G., Manzo, A., De Benedetti, F. and Strippoli, R. (2014) IL-6 amplifies TLR mediated cytokine and chemokine production: implications for the pathogenesis of rheumatic inflammatory diseases. PLoS ONE, 9, e107886.   DOI
30 Nakahara, H., Song, J., Sugimoto, M., Hagihara, K., Kishimoto, T., Yoshizaki, K. and Nishimoto, N. (2003) Antiinterleukin-6 receptor antibody therapy reduces vascular endothelial growth factor production in rheumatoid arthritis. Arthritis Rheum., 48, 1521-1529.   DOI
31 Park, B.S., Song, D.H., Kim, H.M., Choi, B.S., Lee, H. and Lee, J.O. (2009) The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex. Nature, 458, 1191-1195.   DOI
32 Hoshino, K., Takeuchi, O., Kawai, T., Sanjo, H., Ogawa, T., Takeda, Y., Takeda, K. and Akira, S. (1999) Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J. Immunol., 162, 3749-3752.
33 Hirai, A., Minamiyama, Y., Hamada, T., Ishii, M. and Inoue, M. (1997) Glutathione metabolism in mice is enhanced more with hapten-induced allergic contact dermatitis than with irritant contact dermatitis. J. Invest. Dermatol., 109, 314-318.   DOI
34 Leung, D.Y., Boguniewicz, M., Howell, M.D., Nomura, I. and Hamid, Q.A. (2004) New insights into atopic dermatitis. J. Clin. Invest., 113, 651-657.   DOI
35 Jo, W.S., Choi, Y.J., Kim, H.J., Nam, B.H., Lee, G.A., Seo, S.Y., Lee, S.W. and Jeong, M.H. (2010) Methanolic extract of Asterina pectinifera inhibits LPS-induced inflammatory mediators in murine macrophage. Toxicol. Res., 26, 37-46.   DOI
36 Kang, N.J., Koo, D.H., Kang, G.J., Han, S.C., Lee, B.W., Koh, Y.S., Hyun, J.W., Lee, N.H., Ko, M.H., Kang, H.K. and Yoo, E.S. (2015) Dieckol, a component of ecklonia cava, suppresses the production of mdc/ccl22 via down-regulating STAT1 pathway in interferon-${\gamma}$ stimulated HaCaT human keratinocytes. Biomol. Ther. (Seoul), 23, 238-244.   DOI
37 Hyun, Y.J., Piao, M.J., Zhang, R., Choi, Y.H., Chae, S. and Hyun, J.W. (2012) Photo-protection by 3-bromo-4, 5-dihydroxybenzaldehyde against ultraviolet B-induced oxidative stress in human keratinocytes. Ecotoxicol. Environ. Saf., 83, 71-78.   DOI
38 Kim, S.Y., Kim, S.R., Oh, M.J., Jung, S.J. and Kang, S.Y. (2011) In vitro antiviral activity of red alga, Polysiphonia morrowii extract and its bromophenols against fish pathogenic infectious hematopoietic necrosis virus and infectious pancreatic necrosis virus. J. Microbiol., 49, 102-106.   DOI
39 Traidl, C., Jugert, F., Krieg, T., Merk, H. and Hunzelmann, N. (1999) Inhibition of allergic contact dermatitis to DNCB but not to oxazolone in interleukin-4-deficient mice. J. Invest. Dermatol., 112, 476-482.   DOI
40 Levin, T.A., Ownby, D.R., Smith, P.H., Peterson, E.L., Williams, L.K., Ford, J., Young, P. and Johnson, C.C. (2006) Relationship between extremely low total serum IgE levels and rhinosinusitis. Ann. Allergy Asthma Immunol., 97, 650-652.   DOI
41 O'Shea, J.J. and Plenge, R. (2012) JAK and STAT signaling molecules in immunoregulation and immune-mediated disease. Immunity, 36, 542-550.   DOI
42 Chow, J.C., Young, D.W., Golenbock, D.T., Christ, W.J. and Gusovsky, F. (1999) Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction. J. Biol. Chem., 274, 10689-10692.   DOI
43 Kawai, T. and Akira, S. (2007) Signaling to $NF-{\kappa}B$ by Tolllike receptors. Trends Mol. Med., 13, 460-469.   DOI
44 de Vries, I.J., Langeveld-Wildschut, E.G., van Reijsen, F.C., Bihari, I.C., Bruijnzeel-Koomen, C.A. and Thepen, T. (1997) Nonspecific T-cell homing during inflammation in atopic dermatitis: expression of cutaneous lymphocyte-associated antigen and integrin ${\alpha}E{\beta}7$ on skin-infiltrating T cells. J. Allergy Clin. Immunol., 100, 694-701.   DOI
45 Debes, G.F., Bonhagen, K., Wolff, T., Kretschmer, U., Krautwald, S., Kamradt, T. and Hamann, A. (2004) CC chemokine receptor 7 expression by effector/memory CD4+ T cells depends on antigen specificity and tissue localization during influenza A virus infection. J. Virol., 78, 7528-7535.   DOI
46 Kim, M.Y., Kim, J.H. and Cho, J.Y. (2014) Cytochalasin B modulates macrophage-mediated inflammatory responses. Biomol. Ther. (Seoul), 22, 295-300.   DOI
47 Schwartz, L.B. (2004) Effector cells of anaphylaxis: mast cells and basophils. Novartis Found. Symp., 257, 65-74; discussion 74-79, 98-100, 276-285.
48 Stone, K.D., Prussin, C. and Metcalfe, D.D. (2010) IgE, mast cells, basophils, and eosinophils. J. Allergy Clin. Immunol., 125, S73-S80.   DOI