Browse > Article
http://dx.doi.org/10.5487/TR.2016.32.2.095

Bio-Inspired Green Nanoparticles: Synthesis, Mechanism, and Antibacterial Application  

Velusamy, Palaniyandi (Department of Biotechnology, School of Bioengineering, SRM University)
Kumar, Govindarajan Venkat (Department of Biotechnology, School of Bioengineering, SRM University)
Jeyanthi, Venkadapathi (Department of Biotechnology, School of Bioengineering, SRM University)
Das, Jayabrata (Department of Biotechnology, School of Bioengineering, SRM University)
Pachaiappan, Raman (Department of Biotechnology, School of Bioengineering, SRM University)
Publication Information
Toxicological Research / v.32, no.2, 2016 , pp. 95-102 More about this Journal
Abstract
In the recent years, noble nanoparticles have attracted and emerged in the field of biology, medicine and electronics due to their incredible applications. There were several methods have been used for synthesis of nanoparticles such as toxic chemicals and high energy physical procedures. To overcome these, biological method has been used for the synthesis of various metal nanoparticles. Among the nanoparticles, silver nanoparticles (AgNPs) have received much attention in various fields, such as antimicrobial activity, therapeutics, bio-molecular detection, silver nanocoated medical devices and optical receptor. Moreover, the biological approach, in particular the usage of natural organisms has offered a reliable, simple, nontoxic and environmental friendly method. Hence, the current article is focused on the biological synthesis of silver nanoparticles and their application in the biomedical field.
Keywords
Biological synthesis; Metal nanoparticles; Antibacterial activity; Protein degradation; DNA damage;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Bar, H., Bhui, D.K., Sahoo, G.P., Sarkar, P., De, S.P. and Misra, A. (2009) Green synthesis of silver nanoparticles using latex of Jatropha curcas. Colloids Surf., A, 339, 134-139.   DOI
2 Das, J. and Velusamy, P. (2014) Catalytic reduction of methylene blue using biogenic gold nanoparticles from Sesbania grandiflora L. J. Taiwan Inst. Chem. Eng., 45, 2280-2285.   DOI
3 Narayanan, K.B. and Sakthivel, N. (2010) Biological synthesis of metal nanoparticles by microbes. Adv. Colloid Interface Sci., 156, 1-13.   DOI
4 Wei, D. and Qian, W. (2008) Facile synthesis of Ag and Au nanoparticles utilizing chitosan as a mediator agent. Colloids Surf. B Biointerfaces, 62, 136-142.   DOI
5 Li, X., Xu, H., Chen, Z. and Chen, G. (2011) Biosynthesis of nanoparticles by microorganisms and their applications. J. Nanomater., 2011, 270974.
6 Dadosh, T. (2009) Synthesis of uniform silver nanoparticles with a controllable size. Mater. Lett., 63, 2236-2238.   DOI
7 Shakeel, A., Mudasir, A., Babu, L.S. and Saiqa, I. (2015) A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. J. Adv. Res., Doi:10.1016/J.Jare.2015.02.007.   DOI
8 Husseiney, M.I., El-Aziz, M.A., Badr, Y. and Mahmoud, M.A. (2007) Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa. Spectrochim. Acta A, 67, 1003-1006.   DOI
9 Priyadarshini, S., Gopinath, V., Meera Priyadharsshini, N., Mubarakali, D. and Velusamy, P. (2013) Synthesis of anisotropic silver nanoparticles using novel strain, Bacillus flexus and its biomedical application. Colloids Surf. B Biointerfaces, 102, 232-237.   DOI
10 Klaus, T., Joerger, R., Olsson, E. and Granqvist, C.G. (1999) Silver-based crystalline nanoparticles, microbially fabricated. Proc. Natl. Acad. Sci. U.S.A., 96, 13611-13614.   DOI
11 Reddy, A.S., Chen, C.Y., Chen, C.C., Jean, J.S., Chen, H.R., Tseng, M.J., Fan, C.W. and Wang, J.C. (2010) Biological synthesis of gold and silver nanoparticles mediated by the bacteria Bacillus subtilis. J. Nanosci. Nanotechnol., 10, 6567-6574.   DOI
12 Wei, X., Luo, M., Li, W., Yang, L., Liang, X., Xu, L., Kong, P. and Liu, H. (2012) Synthesis of silver nanoparticles by solar irradiation of cell-free Bacillus amyloliquefaciens extracts and $AgNO_3$. Bioresour. Technol., 103, 273-278.   DOI
13 Liu, L., Canizares, M.C., Monger, W., Perrin, Y., Tsakiris, E., Porta, C., Shariat, N., Nicholson, L. and Lomonossoff, G.P. (2005) Cowpea mosaic virus-based systems for the production of antigens and antibodies in plants. Vaccine, 23, 1788-1792.   DOI
14 Blum, A.S., Soto, C.M., Wilson, C.D., Brower, T.L., Pollack, S.K., Schull, T.L., Chatterji, A., Lin, T., Johnson, J.E., Amsinck, C., Franzon, P., Shashidhar, R. and Ratna, B.R. (2005) An engineered virus as a scaffold for three-dimensional selfassembly on the nanoscale. Small, 1, 702-706.   DOI
15 Yu, L., Banerjee, I.A. and Matsui, H. (2003) Direct growth of shape-controlled nanocrystals on nanotubes via biological recognition. J. Am. Chem. Soc., 125, 14837-14840.   DOI
16 Marshall, M., Beliaev, A., Dohnalkova, A., David, W., Shi, L. and Wang, Z. (2007) C-Type cytochrome-dependent formation of U(IV) nanoparticles by Shewanella oneidensis. Plos Biol., 4, 1324-1333.
17 Lee, S.W., Mao, C., Flynn, C.E. and Belcher, A.M. (2002) Ordering of quantum dots, using genetically engineered viruses. Science, 296, 892-895.   DOI
18 Mariekie, G. and Anthony, P. (2006) Microbial production of gold nanoparticles. Gold Bull., 39, 22-28.   DOI
19 Dias, M.A., Lacerda, I.C., Pimentel, P.F., de Castro, H.F. and Rosa, C.A. (2002) Removal of heavy metals by an Aspergillus terreus strain immobilized in a polyurethane matrix. Lett. Appl. Microbiol., 34, 46-50.   DOI
20 Vigneshwaran, N., Ashtaputre, N.M., Varadarajan, P.V., Nachane, R.P., Paralikar, K.M. and Balasubramanya, R.H. (2007) Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Mater. Lett., 61, 1413-1418.   DOI
21 Shenton, W., Douglas, T., Young, M., Stubbs, G. and Mann, S. (1999) Inorganic-organic nanotube composites from template mineralization of tobacco mosaic virus. Adv. Mater., 11, 253-256.   DOI
22 Mao, C., Flynn, C.E., Hayhurst, A., Sweeney, R., Qi, J., Georgiou, G., Iverson, B. and Belcher, A.M. (2003) Viral assembly of oriented quantum dot nanowires. Proc. Natl. Acad. Sci. U.S.A., 100, 6946-6951.   DOI
23 Kowshik, M., Deshmukh, N., Vogel, W., Urban, J., Kulkarni, S.K. and Paknikar, K.M. (2002) Microbial synthesis of semiconductor Cds nanoparticles, their characterization, and their use in the fabrication of an ideal diode. Biotechnol. Bioeng., 78, 583-588.   DOI
24 Awadalla, F.T. and Pesic, B. (1992) Biosorption of cobalt with the AMTTM metal removing agent. Hydrometallurgy, 28, 65-80.   DOI
25 Gardea-Torresdey, J.L., Gomez, E., Peralta-Videa, J.R., Parsons, J.G., Troiani, H. and Jose-Yacaman, M. (2003) Alfalfa sprouts: A natural source for the synthesis of silver nanoparticles. Langmuir, 19, 1357-1361.   DOI
26 Das, J. and Velusamy, P. (2013) Antibacterial effects of biosynthesized silver nanoparticles using aqueous leaf extract of Rosmarinus officinalis L. Mater. Res. Bull., 48, 4531-4537.   DOI
27 Hosea, M., Greene, B., Mcpherson, R., Henzl, M., Alexander, M.D. and Darnall, D.W. (1986) Accumulation of elemental gold on the alga Chlorella vulgaris. Inorg. Chim. Acta, 123, 161-165.   DOI
28 Xie, J., Lee, J.Y., Wang, D.I. and Ting, Y.P. (2007) Identification of active biomolecules in the high-yield synthesis of single-crystalline gold nanoplates in algal solutions. Small, 3, 672-682.   DOI
29 Mata, Y.N., Blazquez, M.L., Ballester, A., Gonzalez, F. and Munoz, J.A. (2008) Characterization of the biosorption of cadmium, lead and copper with the brown algae Fucus vesiculosus. J. Hazard. Mater., 158, 316-323.   DOI
30 Das, J., Das, M.P. and Velusamy, P. (2013) Sesbania grandiflora leaf extract mediated green synthesis of antibacterial silver nanoparticles against selected human pathogens. Spectrochim. Acta, Part A, 104, 265-270.   DOI
31 Gopinath, V., Mubarakali, D., Priyadarshini, S., Meera, P.N., Noor, T. and Velusamy, P. (2012) Biosynthesis of silver nanoparticles from Tribulus terrestris and its antimicrobial activity: A novel biological approach. Colloids Surf. B Biointerfaces, 96, 69-74.   DOI
32 Anshup, A., Venkataraman, J.S., Subramaniam, C., Kumar, R.R., Priya, S., Kumar, T.R., Omkumar, R.V., John, A. and Pradeep, T. (2005) Growth of gold nanoparticles in human cells. Langmuir, 21, 11562-11567.   DOI
33 Larios-Rodriguez, E., Rangel-Ayon, C., Castillo, S.J., Zavala, G. and Herrera-Urbina, R. (2011) Bio-synthesis of gold nanoparticles by human epithelial cells, in vivo. Nanotechnology, 22, 355601.   DOI
34 Park, Y. (2014) A New Paradigm shift for the green synthesis of antibacterial silver nanoparticles utilizing plant extracts. Toxicol. Res., 30, 169-178.   DOI
35 Dwivedi, A.D. and Gopal, K. (2010) Biosynthesis of silver and gold nanoparticles using chenopodium album leaf extract. Colloids Surf., A, 369, 27-33.   DOI
36 Rai, M., Yadav, A. and Gade, A. (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv., 27, 76-83.   DOI
37 Agnihotri, S., Mukherji, S. and Mukherji, S. (2014) Size-controlled silver nanoparticles synthesized over the range 5-100 Nm using the same protocol and their antibacterial efficacy. RSC Adv., 4, 3974-3983.   DOI
38 Feng, Q.L., Wu, J., Chen, G.Q., Cui, F.Z., Kim, T.N. and Kim, J.O. (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J. Biomed. Mater. Res., 52, 662-668.   DOI
39 Sondi, I. and Salopek-Sondi, B. (2007) Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for gram-negative bacteria. J. Colloid Interface Sci., 275, 177-182.
40 Morones, J.R., Elechiguerra, J.L., Camacho, A., Holt, K., Kouri, J.B., Ramirez, J.T. and Yacaman, M.J. (2005) The bactericidal effect of silver nanoparticles. Nanotechnology, 16, 2346-2353.   DOI
41 Song, H.Y., Ko, K.K., Oh, L.H. and Lee, B.T. (2006) Fabrication of silver nanoparticles and their antimicrobial mechanisms. Eur. Cell. Mater., 11, 58.
42 Mohanpuria, P., Rana, N.K. and Yadav, S.K. (2008) Biosynthesis of nanoparticles: Technological concepts and future applications. J. Nanopart. Res., 10, 507-517.   DOI
43 Bhattacharya, R. and Mukherjee, P. (2008) Biological properties of "naked" metal nanoparticles. Adv. Drug Deliv. Rev., 60, 1289-1306.   DOI
44 Ramamurthy, C.H., Padma, M., Samadanam, I.D., Mareeswaran, R., Suyavaran, A., Kumar, M.S., Premkumar, K. and Thirunavukkarasu, C. (2013) The extra cellular synthesis of gold and silver nanoparticles and their free radical scavenging and antibacterial properties. Colloids Surf. B Biointerfaces, 102, 808-815.   DOI