Browse > Article
http://dx.doi.org/10.5487/TR.2010.26.1.001

Applications of Genetically Modified Tools to Safety Assessment in Drug Development  

Kay, Hee-Yeon (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University)
Wu, Hong-Min (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University)
Lee, Seo-In (Daewon Foreign Language High School, WATCH21 Project Team)
Kim, Sang-Geon (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University)
Publication Information
Toxicological Research / v.26, no.1, 2010 , pp. 1-8 More about this Journal
Abstract
The process of new drug development consists of several stages; after identifying potential candidate compounds, preclinical studies using animal models link the laboratory and human clinical trials. Among many steps in preclinical studies, toxicology and safety assessments contribute to identify potential adverse events and provide rationale for setting the initial doses in clinical trials. Gene modulation is one of the important tools of modern biology, and is commonly employed to examine the function of genes of interest. Advances in new drug development have been achieved by exploding information on target selection and validation using genetically modified animal models as well as those of cells. In this review, a recent trend of genetically modified methods is discussed with reference to safety assessments, and the exemplary applications of gene-modulating tools to the tests in new drug development were summarized.
Keywords
Gene modulation; Toxicological study; Knockout mice; Drug development;
Citations & Related Records
연도 인용수 순위
  • Reference
1 McCarthy, T.C., Pollak, P.T., Hanniman, E.A. and Sinal, C.J. (2004). Disruption of hepatic lipid homeostasis in mice after amiodarone treatment is associated with peroxisome proliferator- activated receptor-alpha target gene activation. J. Pharmacol. Exp. Ther., 311, 864-873.   DOI   ScienceOn
2 McKinnon, R.A. and Nebert, D.W. (1998). Cytochrome P450 knockout mice: new toxicological models. Clin. Exp. Pharmacol. Physiol., 25, 783-787.   DOI   ScienceOn
3 Muller, U., Steinhoff, U., Reis, L.F., Hemmi, S., Pavlovic, J., Zinkernagel, R.M. and Aguet, M. (1994). Functional role of type I and type II interferons in antiviral defense. Science, 264, 1918-1921.   DOI
4 Nebeker, J.R., Barach, P. and Samore, M.H. (2004). Clarifying adverse drug events: a clinician's guide to terminology, documentation, and reporting. Ann. Intern. Med., 140, 795-801.   DOI   ScienceOn
5 Ohlstein, E.H., Ruffolo, R.R. Jr and Elliott, J.D. (2000). Drug discovery in the next millennium. Annu. Rev. Pharmacol. Toxicol., 40, 177-191.   DOI   ScienceOn
6 O'Quigley, J., Pepe, M. and Fisher, L. (1990). Continual reassessment method: a practical design for phase 1 clinical trials in cancer. Biometrics, 46, 33-48.   DOI   ScienceOn
7 Paul, J., Seib, R. and Prescott, T. (2005). The Internet and clinical trials: background, online resources, examples and issues. J. Med. Internet. Res., 7, e5.   DOI   ScienceOn
8 Peto, R., Pike, M.C., Armitage, P., Breslow, N.E., Cox, D.R., Howard, S.V., Mantel, N., McPherson, K., Peto, J. and Smith, P.G. (1976). Design and analysis of randomized clinical trials requiring prolonged observation of each patient. I. Introduction and design. Br. J. Cancer., 34, 585-612.   DOI   ScienceOn
9 Jin, D.K., Shido, K., Kopp, H.G., Petit, I., Shmelkov, S.V., Young, L.M., Hooper, A.T., Amano, H., Avecilla, S.T., Heissig, B., Hattori, K., Zhang, F., Hicklin, D.J., Wu, Y., Zhu, Z., Dunn, A., Salari, H., Werb, Z., Hackett, N.R., Crystal, R.G., Lyden, D. and Rafii, S. (2006). Cytokine-mediated deployment of SDF-1 induces revascularization through recruitment of CXCR4+ hemangiocytes. Nat. Med., 12, 557-567.   DOI   ScienceOn
10 Kirn, D.H. and McCormick, F. (1996). Replicating viruses as selective cancer therapeutics. Mol. Med. Today, 2, 519-527.   DOI   ScienceOn
11 Kirschbaum, K.M., Henken, S., Hiemke, C. and Schmitt, U. (2008). Pharmacodynamic consequences of P-glycoprotein-dependent pharmacokinetics of risperidone and haloperidol in mice. Behav. Brain Res., 188, 298-303.   DOI   ScienceOn
12 Kubo, K., Nishikawa, K., Hardy-Yamada, M., Ishizeki, J., Yanagawa, Y. and Saito, S. (2009). Altered responses to propofol, but not ketamine, in mice deficient in the 65-kilodalton isoform of glutamate decarboxylase. J. Pharmacol. Exp. Ther., 329, 592-599.   DOI   ScienceOn
13 Marsh, S. (2007). Impact of pharmacogenomics on clinical practice in oncology. Mol. Diagn. Ther., 11, 79-82.   DOI   ScienceOn
14 Lipinski, C.A., Lombardo, F., Dominy, B.W. and Feeney, P.J. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 46, 3-26.   DOI   ScienceOn
15 Lord, P.G., Nie, A. and McMillian, M. (2006). The evolution of gene expression studies in drug safety assessment. Toxicol. Mech. Methods, 16, 51-58.   DOI   ScienceOn
16 Maher, J.M., Aleksunes, L.M., Dieter, M.Z., Tanaka, Y., Peters, J.M., Manautou, J.E. and Klaassen, C.D. (2008). Nrf2- and PPAR alpha-mediated regulation of hepatic Mrp transporters after exposure to perfluorooctanoic acid and perfluorodecanoic acid. Toxicol. Sci., 106, 319-328.   DOI   ScienceOn
17 Faiola, B., Falls, J.G., Peterson, R.A., Bordelon, N.R., Brodie, T.A., Cummings, C.A., Romach, E.H. and Miller, R.T. (2008). PPAR alpha, more than PPAR delta, mediates the hepatic and skeletal muscle alterations induced by the PPAR agonist GW0742. Toxicol. Sci., 105, 384-394.   DOI   ScienceOn
18 Feher, M. and Schmidt, J.M. (2003). Property distributions: differences between drugs, natural products, andmolecules from combinatorial chemistry. J. Chem. Inf. Comput. Sci., 43, 218-227.   DOI   ScienceOn
19 Fricker, J. (2008). Time for reform in the drug-development process. Lancet. Oncol., 9, 1125-1126.   DOI   ScienceOn
20 Fuchs, H., Tillement, J.P., Urien, S., Greischel, A. and Roth, W. (2009). Concentration-dependent plasma protein binding of the novel dipeptidyl peptidase 4 inhibitor BI 1356 due to saturable binding to its target in plasma of mice, rats and humans. J. Pharm. Pharmacol., 61, 55-62.   DOI   ScienceOn
21 Ito, Y., Oyunzul, L., Yoshida, A., Fujino, T., Noguchi, Y., Yuyama, H., Ohtake, A., Suzuki, M., Sasamata, M., Matsui, M. and Yamada, S. (2009). Comparison of muscarinic receptor selectivity of solifenacin and oxybutynin in the bladder and submandibular gland of muscarinic receptor knockout mice. Eur. J. Pharmacol., 615, 201-206.   DOI   ScienceOn
22 Graham, M.J. and Lake, B.G. (2008). Induction of drug metabolism: species differences and toxicological relevance. Toxicology, 254, 184-191.   DOI   ScienceOn
23 Grieshaber, C.K. and Marsoni, S. (1986). Relation of preclinical toxicology to findings in early clinical trials. Cancer Treat. Rep., 70, 65-72.
24 Hernando, E., Charytonowicz, E., Dudas, M.E., Menendez, S., Matushansky, I., Mills, J., Socci, N.D., Behrendt, N., Ma, L., Maki, R.G., Pandolfi, P.P. and Cordon-Cardo, C. (2007). The AKT-mTOR pathway plays a critical role in the development of leiomyosarcomas. Nat. Med., 13, 748-753.   DOI   ScienceOn
25 Cheng, X. and Klaassen, C.D. (2008b). Perfluorocarboxylic acids induce cytochrome P450 enzymes in mouse liver through activation of PPAR-alpha and CAR transcription factors. Toxicol. Sci., 106, 29-36.   DOI   ScienceOn
26 Collins, F.S. and McKusick, V.A. (2001). Implications of the Human Genome Project for medical science. JAMA, 285, 540-544.   DOI   ScienceOn
27 Cui, Y.J., Aleksunes, L.M., Tanaka, Y., Goedken, M.J. and Klaassen, C.D. (2009). Compensatory induction of liver efflux transporters in response to ANIT-induced liver injury is impaired in FXR-null mice. Toxicol. Sci., 110, 47-60.   DOI   ScienceOn
28 Debouck, C. and Metcalf, B. (2000). The impact of genomics on drug discovery. Annu. Rev. Pharmacol. Toxicol., 40, 193-207.   DOI   ScienceOn
29 DiMasi, J.A., Hansen, R.W., Grabowski, H.G. and Lasagna, L. (1991). Cost of innovation in the pharmaceutical industry. J. Health. Econ., 10, 107-142.   DOI   ScienceOn
30 Descotes, J. and Testud, F. (2005). Toxicovigilance: a new approach for the hazard identification and risk assessment of toxicants in human beings. Toxicol. Appl. Pharmacol., 207, 599-603.   DOI   ScienceOn
31 DiMasi, J.A., Hansen, R.W. and Grabowski, H.G. (2003). The price of innovation: new estimates of drug development costs. J. Health. Econ., 22, 151-185.   DOI   ScienceOn
32 Druker, B.J. and Lydon, N.B. (2000). Lessons learned from the development of an abl tyrosine kinase inhibitor for chronic myelogenous leukemia. J. Clin. Invest., 105, 3-7.   DOI   ScienceOn
33 Enomoto, A., Itoh, K., Nagayoshi, E., Haruta, J., Kimura, T., O'Connor, T., Harada, T. and Yamamoto, M. (2001). High sensitivity of Nrf2 knockout mice to acetaminophen hepatotoxicity associated with decreased expression of ARE-regulated drug metabolizing enzymes and antioxidant genes. Toxicol. Sci., 59, 169-177.   DOI   ScienceOn
34 Chan, K. and Kan, Y.W. (1999). Nrf2 is essential for protection against acute pulmonary injury in mice. Proc. Natl. Acad. Sci. USA, 96, 12731-12736.   DOI
35 Andre, P., Delaney, S.M., LaRocca, T., Vincent, D., DeGuzman, F., Jurek, M., Koller, B., Phillips, D.R. and Conley, P.B. (2003). P2Y12 regulates platelet adhesion/activation, thrombus growth, and thrombus stability in injured arteries. J. Clin. Invest., 112, 398-406.   DOI   ScienceOn
36 Birney, E., Bateman, A., Clamp, M.E. and Hubbard, T.J. (2001). Mining the draft human genome. Nature, 409, 827-828.   DOI   ScienceOn
37 Caldwell, G.W., Ritchie, D.M., Masucci, J.A., Hageman, W. and Yan, Z. (2001). The new pre-preclinical paradigm: compound optimization in early and late phase drug discovery. Curr. Top. Med. Chem., 1, 353-366.   DOI
38 Cheng, X. and Klaassen, C.D. (2008a). Critical role of PPARalpha in perfluorooctanoic acid- and perfluorodecanoic acidinduced downregulation of Oatp uptake transporters in mouse livers. Toxicol. Sci., 106, 37-45.   DOI   ScienceOn
39 Rioux, P.P. (2000). Clinical trials in pharmacogenetics and pharmacogenomics: methods and applications. Am. J. Health Syst. Pharm., 57, 887-898.
40 Yoshizato, K. and Tateno, C. (2009). A human hepatocyte-bearing mouse: an animal model to predict drug metabolism and effectiveness in humans. PPAR Res., 2009, 476217.
41 Ryan, T.P., Stevens, J.L. and Thomas, C.E. (2008). Strategic applications of toxicogenomics in early drug discovery. Curr. Opin. Pharmacol., 8, 654-660.   DOI   ScienceOn
42 Simon, R. (1989). Optimal two-stage designs for phase II clinical trials. Control. Clin. Trials., 10, 1-10.   DOI   ScienceOn
43 Stewart, J.J., Allison, P.N. and Johnson, R.S. (2001). Putting a price on biotechnology. Nat. Biotechnol., 19, 813-817.   DOI   ScienceOn
44 Valenta, R. (2002). The future of antigen-specific immunotherapy of allergy. Nat. Rev. Immunol., 2, 446-453.   DOI
45 Tanaka, Y., Aleksunes, L.M., Cui, Y.J. and Klaassen, C.D. (2009). ANIT-induced intrahepatic cholestasis alters hepatobiliary transporter expression via Nrf2-dependent and independent signaling. Toxicol. Sci., 108, 247-257.   DOI   ScienceOn
46 Thomas, K.R. and Capecchi, M.R. (1987). Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell, 51, 503-512.   DOI   ScienceOn
47 Ulrich, R. and Friend, S.H. (2002). Toxicogenomics and drug discovery: will new technologies help us produce better drugs? Nat. Rev. Drug Discov., 1, 84-88.   DOI
48 Wang, S., Sim, T.B., Kim, Y.S. and Chang, Y.T. (2004). Tools for target identification and validation. Curr. Opin. Chem. Biol., 8, 371-377.   DOI   ScienceOn
49 Weinshilboum, R. (2003). Inheritance and drug response. N. Engl. J. Med., 348, 529-537.   DOI   ScienceOn
50 Woodcock, J. and Woosley, R. (2008). The FDA critical path initiative and its influence on new drug development. Annu. Rev. Med., 59, 1-12.   DOI   ScienceOn
51 Phillips, J.M. and Goodman, J.I. (2009). Multiple genes exhibit phenobarbital-induced constitutive active/androstane receptormediated DNA methylation changes during liver tumorigenesis and in liver tumors. Toxicol. Sci., 108, 273-289.   DOI   ScienceOn
52 Pineau, I., Sun, L., Bastien, D. and Lacroix, S. (2009). Astrocytes initiate inflammation in the injured mouse spinal cord by promoting the entry of neutrophils and inflammatory monocytes in an IL-1 receptor/MyD88-dependent fashion. Brain. Behav. Immun., [Epub ahead of print].
53 Reisman, S.A., Csanaky, I.L., Aleksunes, L.M. and Klaassen, C.D. (2009a). Altered disposition of acetaminophen in Nrf2-null and Keap1-knockdown mice. Toxicol. Sci., 109, 31-40.   DOI   ScienceOn
54 Pussard, E., Merzouk, M. and Barennes, H. (2007). Increased uptake of quinine into the brain by inhibition of P-glycoprotein. Eur. J. Pharm. Sci., 32, 123-127.   DOI   ScienceOn
55 Pusztai, L. (2007). Limitations of pharmacogenomic predictor discovery in Phase II clinical trials. Pharmacogenomics, 8, 1443-1448.   DOI   ScienceOn
56 Ramos-Gomez, M., Kwak, M.K., Dolan, P.M., Itoh, K., Yamamoto, M., Talalay, P. and Kensler, T.W. (2001). Sensitivity to carcinogenesis is increased and chemoprotective efficacy of enzyme inducers is lost in nrf2 transcription factor-deficient mice. Proc. Natl. Acad. Sci. USA, 98, 3410-3415.   DOI   ScienceOn
57 Reisman, S.A., Csanaky, I.L., Yeager, R.L. and Klaassen, C.D. (2009b). Nrf2 activation enhances biliary excretion of sulfobromophthalein by inducing glutathione-S-transferase activity. Toxicol. Sci., 109, 24-30.   DOI   ScienceOn
58 Reisman, S.A., Yeager, R.L., Yamamoto, M. and Klaassen, C.D. (2009c). Increased Nrf2 activation in livers from Keap1-knockdown mice increases expression of cytoprotective genes that detoxify electrophiles more than those that detoxify reactive oxygen species. Toxicol. Sci., 108, 35-47.   DOI   ScienceOn