Browse > Article
http://dx.doi.org/10.5487/TR.2008.24.4.235

Caenorhabditis elegans as a Biological Model for Multilevel Biomarker Analysis in Environmental Toxicology and Risk Assessment  

Choi, Jin-Hee (Faculty of Environmental Engineering, College of Urban Science, University of Seoul)
Publication Information
Toxicological Research / v.24, no.4, 2008 , pp. 235-243 More about this Journal
Abstract
While in some instances, loss of diversity results from acute toxicity (e.g. major pollution incidents), in most cases it results from long-term sub-lethal effects that alter the relative competitive ability and fitness of certain organisms. In such cases the sub-lethal effects will cause a physiological response in the organism that ultimately leads to community level changes. Very sensitive tools are now available to study sub-lethal responses at the molecular level. However, relating such laboratory measurements to ecological effects represents a substantial challenge that can only be met by investigation at all scales (molecular, individual organism and community level) with an appropriate group of organisms. Among the various in vertebrates which can be used as model organisms in such a way, the soil nematode, Caenorhabditis elegans appear to be a promising biological model to diagnose environmental quality. This paper reviews the current status of multilevel biomarkers in environmental toxicology, and C. elegans as promising organisms for this approach.
Keywords
Caenorhabditis elegans; Multilevel biomarker; Environmental toxicology;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Lee, S.W., Park, K., Hong, J. and Choi, J. (2008). Ecotoxicological evaluation of octachlorostyrene in fourth instar larvae of Chironomus riparius (Diptera, Chironomidae). Environ. Toxicol. Chem., 27, 1118-1127   DOI   ScienceOn
2 Peredney, C.L. and Williams, P.L. (2000). Utility of Caenorhabditis elegans for assessing heavy metal contamination in artificial soil. Arch. Environ. Contam. Toxicol., 39, 113-118
3 Paton, G.I., Rattray, E.A.S., Campbell, C.D., Menssen, H., Cresser, M.S., Glover, L.A. and Killham, K. (1997). In: Bioindicators of Soil Health (Pankhurst, C.S., Doube, B. and Gupta, V., Eds.), Wallingford, UK: CAB Intermonitor, pp. 397-418
4 Power, R.S. and de Pomerai, D.I. (1999). Effect of single and paired metal inputs in soil on a stress-inducible transgenic nematode. Arch. Environ. Contam. Toxicol., 37, 503- 511   DOI
5 Reichert, K. and Menzel, R. (2005). Expression profiling of five different xenobiotics using a Caenorhabditis elegans whole-genome microarray. Chemosphere, 61, 229-237   DOI   ScienceOn
6 Snell, T.W., Brogdon, S.E. and Morgan, M.B. (2003). Gene expression profiling in ecotoxicology. Ecotoxicology, 12, 475-483   DOI   ScienceOn
7 Ura, K., Kai, T., Sakata, S., Iguchi, T. and Arizono, K. (2002). Aquatic acute toxicity testing using the nematode Caenorhabditis elegans. J. Health Sci., 48, 583-586   DOI   ScienceOn
8 Boyd, W.A. and Williams, P.L. (2003). Comparison of the sensitivity of three nematode species to copper and their utility in aquatic and soil toxicity tests. Environ. Toxicol. Chem., 22, 2768-2774   DOI   ScienceOn
9 Committee on Developmental Toxicology., Board on Environmental Studies and Toxicology., National Research Council. (2000). Scientific Frontiers in Developmental Toxicology and Risk Assessment. National Research Council, pp. 1- 354
10 Custodia, N., Won, S.J., Novillo, A., Wieland, M., Li, C. and Callard, I.P. (2001). Caenorhabditis elegans as an environmental monitor using DNA microarray analysis. Ann. N.Y. Acad. Sci., 948, 32-42
11 Dhawan, R., Dusenbery, D.B. and Williams, P.L. (2000). A comparison of metal-induced lethality and behavioral responses in the nematode Caenorhabditis elegans. Environ. Toxicol. Chem., 19, 3061-3067   DOI
12 Dong, J., Boyd, W.A. and Freedman, J.H. (2008). Molecular characterization of two homologs of the Caenorhabditis elegans cadmium-responsive gene cdr-1: cdr-4 and cdr-6. J. Mol. Biol., 376, 621-633   DOI   ScienceOn
13 Fossi, M.C., Casini, S., Savelli, C., Corbelli, C., Franchi, E., Mattei, N., Sanchez-Hernandez, J.C., Corsi, Bamber, I., Depledge, S. and Depledge, M.H. (2000). Biomarker responses at different levels of biological organisation in crabs (Carcinus aestuarii) experimentally exposed to benzo(alpha)pyrene. Chemosphere, 40, 861-874   DOI   ScienceOn
14 Ibiam, U. and Grant, A. (2005). RNA/DNA ratios as a sublethal endpoint for large-scale toxicity tests with the nematode Caenorhabditis elegans. Environ. Toxicol. Chem., 24, 1155-1159   DOI   ScienceOn
15 Lagadic, L., Caquet, T. and Ramade, F. (1994). The role of biomarkers in environmental assessment (5). Invertebrate populations and communities. Ecotoxicology, 3, 193-208   DOI   ScienceOn
16 Leacock, S.W. and Reinke, V. (2006). Expression profiling of MAP kinase-mediated meiotic progression in Caenorhabditis elegans. PLoS. Genet., 10, e174
17 Lee, S.B. and Choi, J. (2006). Multilevel evaluation of nonylphenol toxicity in fourth-instar larvae of Chironomus riparius (Diptera, Chironomidae). Environ. Toxicol. Chem., 25, 3006-3014   DOI   ScienceOn
18 Tullet, J.M., Hertweck, M., An, J.H., Baker, J., Hwang, J.Y., Liu, S., Oliveira, R.P., Baumeister, R. and Blackwell, T.K. (2008). Direct inhibition of the longevity-promoting factor SKN-1 by insulin-like signaling in C. elegans. Cell, 132, 1025-1038   DOI   ScienceOn
19 Roesijadi, G. (1994). Metallothionein induction as a measure of response to metal exposure in aquatic animal. Environ. Health Perspect, 12, 91-95
20 Stringham, E.G. and Candido, E.P. (1994). Transgenic hsp16- lacZ strains of the soil nematode Caenorhabditis elegans as biological monitors of environmental stress. Environ. Toxicol. Chem., 13, 1211-1220   DOI
21 Williams, P.L., Anderson, G.L., Johnstone, J.L., Nunn, A.D., Tweedle, M.F. and Wedeking, P. (2000). Caenorhabditis elegans as an alternative animal species. J. Toxicol. Environ. Health A., 61, 641-647   DOI
22 Williams, P.L. and Dusenbery, D.B. (1990). Aquatic toxicity testing using the nematode Caenorhabditis elegans. Environ. Toxicol. Chem., 9, 1285-1290   DOI
23 Cui, Y., McBride, S.J., Boyd, W.A., Alper, S. and Freedman, J.H. (2007). Toxicogenomic analysis of Caenorhabditis elegans reveals novel genes and pathways involved in the resistance to cadmium toxicity. Genome Biol., 8, R122   DOI
24 Dong, J., Song, M.O. and Freedman, J.H. (2005). Identification and characterization of a family of Caenorhabditis elegans genes that is homologous to the cadmiumresponsive gene cdr-1. Biochim. Biophys. Acta., 1727, 16- 26   DOI   ScienceOn
25 Antoshechkin, I. and Sternberg, P.W. (2007). The versatile worm: genetic and genomic resources for Caenorhabditis elegans research. Nat. Rev. Genet., 8, 518-532   DOI   ScienceOn
26 Bettinger, J.C., Carnell, L., Davies, A.G. and McIntire, S.L. (2004). The use of Caenorhabditis elegans in molecular neuropharmacology. Int. Rev. Neurobiol., 62, 195-212   DOI   ScienceOn
27 Grad, L.I. and Lemire, B.D. (2004). Mitochondrial complex I mutations in Caenorhabditis elegans produce cytochrome c oxidase deficiency, oxidative stress and vitamin-responsive lactic acidosis. Hum. Mol. Genet., 13, 303-314   DOI   ScienceOn
28 Brenner, S. (1974). The genetics of Caenorhabditis elegans. Genetics., 77, 91-94
29 Dhawan, R., Dusenbery, D.B. and Williams, P.L. (1999). Comparison of lethality, reproduction, and behavior as toxicological endpoints in the nematode Caenorhabditis elegans. J. Toxicol. Environ. Health A., 58, 451-462   DOI
30 Kwon, J.Y., Hong, M., Choi, M.S., Kang, S., Duke, K., Kim, S., Lee, S. and Lee, J. (2004). Ethanol-response genes and their regulation analyzed by a microarray and comparative genomic approach in the nematode Caenorhabditis elegans. Genomics, 83, 600-614   DOI   ScienceOn
31 Risso-de Faverney, C., Devaux, A., Lafaurie, M., Girard, J.P. and and Rahmani, R. (2001). Toxic effects of wastewaters collected at upstream and downstream sites of a purification station in cultures of rainbow trout hepatocytes. Arch. Environ. Contam. Toxicol., 41, 129-141   DOI
32 Lagido, C., Pettitt, J., Porter, A.J., Paton, G.I. and Glover, L.A. (2001). Development and application of bioluminescent Caenorhabditis elegans as multicellular eukaryotic biosensors. FEBS Lett., 23, 36-39
33 Russo, J. and Lagadic, L. (2000). Effects of parasitism and pesticide exposure on characteristics and functions of hemocyte populations in the freshwater snail Lymnaea palustris (Gastropoda, Pulmonata). Cell Biol. Toxicol., 16, 15-30   DOI
34 Yoshimi, T., Minowa, K., Karouna-Renier, N.K., Watanabe, C., Sugaya, Y. and Miura, T. (2002). Activation of stressinduced gene by insecticides in the midge, Chironomus yoshimatsui. J. Biochem. Mol. Toxicol., 16, 10-17   DOI   ScienceOn
35 Caquet, T., Lagadic, L. and Sheffield, S.R. (2000). Mesocosms in ecotoxicology (1): Outdoor aquatic systems. Rev. Environ. Contam. Toxicol., 165, 1-38
36 Liao, V.H., Dong, J. and Freedman, J.H. (2002). Molecular characterization of a novel, cadmium-inducible gene from the nematode Caenorhabditis elegans. J. Biol. Chem., 277, 42049-42059   DOI   ScienceOn
37 Scholz, S., Kurauchi, K., Kinoshita, M., Oshima, Y., Ozato, K., Schirmer, K. and Wakamatsu, Y. (2005). Analysis of estrogenic effects by quantification of green fluorescent protein in juvenile fish of a transgenic medaka. Environ. Toxicol. Chem., 24, 2553-2561   DOI   ScienceOn
38 Kipreos, E.T. (2005). Ubiquitin-mediated pathways in C. elegans. WormBook, 1, 1-24
39 Dengg, M. and van Meel, J.C. (2004). Caenorhabditis elegans as model system for rapid toxicity assessment of pharmaceutical compounds. J. Pharmacol. Toxicol. Methods, 50, 9-14
40 Steinberg, C.E., Sturzenbaum, S.R. and Menzel. R. (2008). Genes and environment - Striking the fine balance between sophisticated biomonitoring and true functional environmental genomics. Sci. Total Environ. pp. 142-161
41 Menzel, R., Yeo, H.L., Rienau, S., Li, S., Steinberg, C.E. and Sturzenbaum, S.R. (2007). Cytochrome P450s and shortchain dehydrogenases mediate the toxicogenomic response of PCB52 in the nematode Caenorhabditis elegans. J. Mol. Biol., 370, 1-13   DOI   ScienceOn
42 Anderson, G.L., Boyd, W.A. and Williams, P.L. (2001). Assessment of sublethal endpoints for toxicity testing with the nematode Caenorhabditis elegans. Environ. Toxicol. Chem., 20, 833-838   DOI
43 Choi, J., Caquet, T. and Roche, H. (2002). Multilevel effects of sublethal fenitrothion exposure in Chironomus riparius Mg. (Diptera, Chironomidae) larvae. Environ. Toxicol. Chem., 21, 2725-2730   DOI
44 Leung, M.C., Williams, P.L., Benedetto, A., Au, C., Helmcke, K.J., Aschner, M. and Meyer, J.N. (2008). Caenorhabditis elegans: an Emerging Model in Biomedical and Environmental Toxicology. Toxicol. Sci., published
45 Gami, M.S., Iser, W.B., Hanselman, K.B. and Wolkow, C.A. (2006). Activated AKT/PKB signaling in C. elegans uncouples temporally distinct outputs of DAF-2/insulin-like signaling. B.M.C. Dev. Biol., 6, 45   DOI   ScienceOn
46 Cole, R.D., Anderson, G.L. and Williams, P.L. (2004). The nematode Caenorhabditis elegans as a model of organophosphate- induced mammalian neurotoxicity. Toxicol. Appl. Pharmacol., 194, 248-256   DOI   ScienceOn
47 Heckmann, L.H., Sibly, R.M., Connon, R., Hooper, H.L., Hutchinson, T.H., Maund, S.J., Hill, C.J., Bouetard, A. and Callaghan, A. (2008). Systems biology meets stress ecology: linking molecular and organismal stress responses in Daphnia magna. Genome Biology, 9, R40   DOI   ScienceOn
48 Hollis, R.P., Killham, K. and Glover, L.A. (2000). Design and application of a biosensor for monitoring toxicity of compounds to eukaryotes. Appl. Environ. Microbiol., 66, 1676- 1679   DOI
49 Jones, D., Stringham, E.G., Babich, S.L. and Candido, E.P. (1996). Transgenic strains of the nematode C. elegans in biomonitoring and toxicology: Effects of captan and related compounds on the stress response. Toxicology, 109, 119- 127   DOI
50 Menzel, R., Rodel, M., Kulas, J. and Steinberg, C.E. (2005). CYP35: Xenobiotically induced gene expression in the nematode Caenorhabditis elegans. Arch. Biochem. Biophys., 438, 93-102   DOI   ScienceOn
51 Roh, J.Y., Lee, J. and Choi, J. (2006). Assessment of stressrelated gene expression in the heavy metal-exposed nematode Caenorhabditis elegans: a potential biomarker for metal-induced toxicity monitoring and environmental risk assessment. Environ. Toxicol. Chem., 25, 2946-2956   DOI
52 Schafer, W.R. (2006). Neurophysiological methods in C. elegans: an introduction. WormBook, 2, 1-4
53 Daitoku, H. and Fukamizu, A. (2007). FOXO transcription factors in the regulatory networks of longevity. J. Biochem., 141, 769-774   DOI   ScienceOn
54 Kurauchi, K., Nakaguchi, Y., Tsutsumi, M., Hori, H., Kurihara, R., Hashimoto, S., Ohnuma, R., Yamamoto, Y., Matsuoka, S., Kawai, S., Hirata, T. and Kinoshita, M. (2005). In vivo visual reporter system for detection of estrogen-like substances by transgenic medaka. Environ. Sci. Technol., 39, 2762-2768   DOI   ScienceOn
55 Roh, J.Y. and Choi, J. (2008). Ecotoxicological evaluation of chlorpyrifos exposure on the nematode Caenorhabditis elegans. Ecotoxicol. Environ. Saf., doi:10.1016
56 Wang, D.Y. and Wang, Y. (2008). Phenotypic and behavioral defects caused by barium exposure in nematode Caenorhabditis elegans. Arch. Environ. Contam. Toxicol., 54, 447-453   DOI
57 Wang, Y.M., Pu, P. and Le, W.D. (2007). ATP depletion is the major cause of MPP+ induced dopamine neuronal death and worm lethality in alpha-synuclein transgenic C. elegans. Neurosci Bull., 23, 329-335   DOI
58 Anderson, G.L., Cole, R.D. and Williams, P.L. (2004). Assessing behavioral toxicity with Caenorhabditis elegans. Environ. Toxicol. Chem., 23, 1235-1240   DOI   ScienceOn
59 Barsyte, D., Lovejoy, D.A. and Lithgow, G.J. (2001). Longevity and heavy metal resistance in daf-2 and age-1 longlived mutants of Caenorhabditis elegans. FASEB J., 15, 627-634   DOI   ScienceOn
60 Khanna, N., Cressman, C.P. 3rd., Tatara, C.P. and Williams, P.L. (1997). Tolerance of the nematode Caenorhabditis elegans to pH, salinity, and hardness in aquatic media. Arch. Environ. Contam. Toxicol., 32, 110-114   DOI
61 Schroeder, F.C. (2006). Small molecule signaling in Caenorhabditis elegans. ACS Chem Biol., 1, 198-200. Snell, T.W., Brogdon, S.E. and Morgan, M.B. (2003). Gene expression profiling in ecotoxicology. Ecotoxicology, 12, 475-483   DOI   ScienceOn
62 Kaletta, T. and Hengartner, M.O. (2006). Finding function in novel targets: C. elegans as a model organism. Nat. Rev. Drug. Discov., 5, 387-398   DOI   ScienceOn
63 Leiers, B., Kampkotter, A., Grevelding, C.G., Link, C.D., Johnson, T.E. and Henkle-Duhrsen, K. (2003). A stress-responsive glutathione S-transferase confers resistance to oxidative stress in Caenorhabditis elegans. Free Radic Biol. Med., 34, 1405-1415.   DOI   ScienceOn
64 Roh, J.Y., Jung, I.H., Lee, J.Y. and Choi, J. (2007). Toxic effects of di(2-ethylhexyl)phthalate on mortality, growth, reproduction and stress-related gene expression in the soil nematode Caenorhabditis elegans. Toxicology, 237, 126-133   DOI   ScienceOn
65 Williams, P.L. and Dusenbery, D.B. (1988). Using the nematode Caenorhabditis elegans to predict mammalian acute lethality to metallic salts. Toxicol. Ind. Health, 4, 469-478   DOI
66 Harada, H., Kurauchi, M., Hayashi, R. and Eki, T. (2007). Shortened lifespan of nematode Caenorhabditis elegans after prolonged exposure to heavy metals and detergents. Ecotoxicol. Environ. Saf., 66, 378-383   DOI   ScienceOn
67 Inoue, H., Hisamoto, N., An, J.H., Oliveira, R.P., Nishida, E., Blackwell, T.K. and Matsumoto, K. (2005). The C. elegans p38 MAPK pathway regulates nuclear localization of the transcription factor SKN-1 in oxidative stress response. Genes Dev., 19, 2278-2283   DOI   ScienceOn
68 Kendall, G., Cooper, H.J., Heptinstall, J., Derrick, P.J., Walton, D.J. and Peterson, I.R. (2001). Specific electrochemical nitration of horse heart myoglobin. Arch. Biochem. Biophys., 392, 169-179   DOI   ScienceOn
69 Ayyadevara, S., Dandapat, A., Singh, S.P., Benes, H., Zimniak, L., Reis, R.J. and Zimniak, P. (2005). Lifespan extension in hypomorphic daf-2 mutants of Caenorhabditis elegans is partially mediated by glutathione transferase CeGSTP2- 2. Aging Cell., 4, 299-307   DOI   ScienceOn
70 Poynton, H.C., Varshavsky, J.R., Chang, B., Cavigiolio, G., Chan, S., Holman, P.S., Loguinov, A.V., Bauer, D.J., Komachi, K., Theil, E.C., Perkins, E.J., Hughes, O. and Vulpe, C.D. (2007). Daphnia magna ecotoxicogenomics provides mechanistic insights into metal toxicity. Environ. Sci. Technol., 41, 1044-1050   DOI   ScienceOn
71 Swain, S.C., Keusekotten, K., Baumeister, R. and Sturzenbaum, S.R. (2004). C. elegans metallothioneins: new insights into the phenotypic effects of cadmium toxicosis. J. Mol. Biol., 341, 951-959   DOI   ScienceOn
72 Ayyadevara, S., Alla, R., Thaden, J.J. and Shmookler Reis, R.J. (2008). Remarkable longevity and stress resistance of nematode PI3K-null mutants. Aging Cell, 7, 13-22   DOI   ScienceOn
73 Kim, J., Takahashi, M., Shimizu, T., Shirasawa, T., Kajita, M., Kanayama, A. and Miyamoto, Y. (2008). Effects of a potent antioxidant, platinum nanoparticle, on the lifespan of Caenorhabditis elegans. Mech. Ageing. Dev., 129, 322-331   DOI   ScienceOn
74 Bongers, T. and Ferris, H. (1999). Nematode community structure as a bioindicator in environmental monitoring. Trends Ecol. Evol., 14, 224-228   DOI   ScienceOn
75 Chu, K.W., Chan, S.K. and Chow, K.L. (2005). Improvement of heavy metal stress and toxicity assays by coupling a transgenic reporter in a mutant nematode strain. Aquat. Toxicol., 74, 320-332   DOI   ScienceOn
76 Forbes, V.E., Palmqvist, A. and Bach, L. (2006). The use and misuse of biomarkers in ecotoxicology. Environ. Toxicol. Chem., 25, 272-280   DOI   ScienceOn
77 Depledge, M.H. (1994). Genotypic toxicity: implications for individuals and populations. Environ. Health Perspect., 12, 101-104
78 Newman, M.C. and Jagoe, C.H. (1996). Ecotoxicology: a hierarchical treatment, Savannah River series on environmental sciences, Boca Raton, pp. 411
79 Hughes, S. and Stürzenbaum, S.R. (2007). Single and double metallothionein knockout in the nematode C. elegans reveals cadmium dependent and independent toxic effects on life history traits. Environ. Pollut., 145, 395-400   DOI   ScienceOn
80 Lee, S.M., Lee, S.B., Park, C.H. and Choi, J. (2006). Expression of heat shock protein and hemoglobin genes in Chironomus tentans (Diptera, chironomidae) larvae exposed to various environmental pollutants: a potential biomarker of freshwater monitoring. Chemosphere, 65, 1074-1081   DOI   ScienceOn