Browse > Article

Incidence of Micronuclei in Lymphocytes of Cattle in the High Background Radiation Area  

Lee, Hae-June (Korea Institute of Radiological & Medical Science)
Kang, Chang-Mo (Korea Institute of Radiological & Medical Science)
Kim, Se-Ra (College of Veterinary Medicine, Chonnam National University)
Moon, Chang-Jong (College of Veterinary Medicine, Chonnam National University)
Kim, Jong-Choon (College of Veterinary Medicine, Chonnam National University)
Kim, Ill-Hwa (College of Veterinary Medicine, Chungbuk National University)
Jo, Sung-Kee (Advanced Radiation Technology Institute, KAERI)
Jang, Jong-Sik (Department of Animal Science, Sangju National University)
Kim, Sung-Ho (College of Veterinary Medicine, Chonnam National University)
Publication Information
Toxicological Research / v.22, no.4, 2006 , pp. 417-422 More about this Journal
Abstract
Cytogenetic and hematological analysis was performed in peripheral blood obtained from cattle bred in the high background radiation areas (HBRA, Goesan-gun, Cheongwon-gun, Boeun-gun) and a control area. The frequencies of gamma-ray induced micronuclei (MN) in the cytokinesis-blocked (CB) lymphocytes at several doses were measured in 3 cattle. An estimated dose of radiation was calculated by a best fitting linear-quadratic model based on the radiation-induced MN formation from the bovine lymphocytes exposed in vitro to radiation over the range from 0 mGy to 1,969 mGy. The measurements performed after irradiation showed dose-related increases in the MN frequency in each donors. The results were analyzed using a linear-quadratic model with a line of best fit of $y=(0.0583{\pm}0.0137)D+(0.0366{\pm}0.0081)D^2+(0.0093{\pm}0.0015)$ (y=number of MN/CB cells and D=irradiation dose in Gy). MN rates per 1,000 CB lymphocytes of cattle from the Goesan-gun, Cheongwon-gun, Boeun-gun and the control area were $6.50{\pm}2.72,\;9.00{\pm}4.50,\;10.89{\pm}4.23\;and\;9.60{\pm}4.70$, respectively. The MN frequencies of CB lymphocytes from cattle bred in 4 areas mean that the values are within the background variation in this experiment. The MN frequencies and hematological values were similar regardless of whether the cattle were bred in the HBRA or the control area.
Keywords
Micronuclei; Cattle; Lymphocyte; High background radiation area;
Citations & Related Records
연도 인용수 순위
  • Reference
1 He, J.L., Jin, H.Y., Jin, L.F. and Gao, S.Y. (2000): Monitoring of human exposure to radiation with the binucleated lymphocyte micronucleus assay. Biomed. Environ. Sci., 13, 32-36
2 Muller, W.U. and Streffer, C. (1991): Biological indicators for radiation damage. Int. J. Radiat. Biol., 59, 863-873   DOI
3 Scarfi, M.R., Lioi, M.B., Di Berardino, D., Zeni, O., Coviello, A.M. and Matassino, D. (1993): Measurement of micronuclei by cytokinesis-block method in bovine lymphocytes. Mutat. Res., 289, 291-295   DOI
4 Thierens, H., Vral, A., Barbe, M., Aousalah, B. and De Ridder, L. (1999): A cytogenetic study of nuclear power plant workers using the micronucleus-centromere assay. Mutat. Res., 445, 105-111   DOI   ScienceOn
5 Zhang, W., Wang, C., Chen, D., Minamihisamatsu, M., Morishima, H., Yuan, Y., Wei, L., Sugahara, T. and Hayata, I. (2003): Imperceptible effect of radiation based on stable type chromosome aberrations accumulated in the lymphocytes of residents in the high background radiation area in China. J. Radiat. Res. (Tokyo), 44, 69-74   DOI   ScienceOn
6 김세라, 강창모, 김성호 (2004): 세포질 분열 차단 림프구를 이용한 울진원자력발전소 주변 소의 미소핵 발생 평가. 대한수의학회지, 44, 343-348
7 안병균 (2002): 충북지역의 환경방사선의 분석. 산업과학기술연구소 논문집, 16, 81-85
8 안윤옥 (2003): 원전 주변지역 역학조사 연구. 과학기술부 연구보고서, 288-301
9 Catena, C., Asprea, L., Carta, S., Tortora, G., Conti, D., Parasacchi, P. and Righi, E. (1997): Dose-response of Xirradiated human and equine lymphocytes. Mutat. Res., 373, 9-16   DOI
10 Sutiakova, I., Sulik, E., Rimkova, S., Sakalikova, A. and Sutiak, V. (2001): Micronucleus frequency in cytokinesisblocked bovine lymphocytes from regions with different pollution levels in Slovakia. Bull. Environ. Contam. Toxicol., 66, 449-455   DOI
11 Ishihara, T. and Sasaki, M. (1983): Radiation-induced chromosome damage in man. Alan R. Liss, Inc. New York, pp. 561-583
12 Backer, L.C., Grindem, C.B., Corbett, W.T., Cullins, L. and Hunter, J.L. (2001): Pet dogs as sentinels for environmental contamination. Sci. Total Environ., 274, 161-169   DOI   ScienceOn
13 Almassy, Z., Krepinsky, A.B., Bianco, A. and Koteles, G.J. (1987): The present state and perspectives of micronucleus assay in radiation protection. A review. Int. J. Rad. Appl. Instrum. [A], 38, 241-249   DOI   ScienceOn
14 Jiang, T., Hayata, I., Wang, C., Nakai, S., Yao, S., Yuan, Y., Dai, L., Liu, Q., Chen, D., Wei, L. and Sugahara, T. (2000): Dose-effect relationship of dicentric and ring chromosomes in lymphocytes of individuals living in the high background radiation areas in China. J. Radiat. Res.(Tokyo), 41 Suppl, 63-68
15 Chung, H.W., Kim, S.Y., Sohn, E.H. and Ha, S.W. (2000): Analysis of chromosome aberrations in nuclear-powerplant workers considering the lifetime of lymphocytes. Int. J. Radiat. Biol., 76, 923-927   DOI
16 Ramalho, A., Sunjevaric, I. and Natarajan, A.T. (1988): Use of the frequencies of micronuclei as quantitative indicators of X-ray-induced chromosomal aberrations in human peripheral blood lymphocytes: comparison of two methods. Mutat. Res., 207, 141-146   DOI   ScienceOn
17 Ulsh, B., Hinton, T.G., Congdon, J.D., Dugan, L.C., Whicker, F.W. and Bedford, J.S. (2003): Environmental biodosimetry: a biologically relevant tool for ecological risk assessment and biomonitoring. J. Environ. Radioact., 66, 121-139   DOI   ScienceOn
18 Vandecasteele, C.M. (2004): Environmental monitoring and radioecology: a necessary synergy. J. Environ. Radioact., 72, 17-23   DOI   ScienceOn
19 김세라, 김성호 (2003): 림프구 미소핵 측정법을 이용한 원자력발전소 주변 소의 이상산에 대한 방사선생물학적 평가. 한국임상수의학회지, 20, 364-368
20 Thierens, H., Vral, A., Barbe, M., Meijlaers, M., Baeyens, A. and Ridder, L.D. (2002): Chromosomal radiosensitivity study of temporary nuclear workers and the support of the adaptive response induced by occupational exposure. Int. J. Radiat. Biol., 78, 1117-1126   DOI
21 Spirin, E.V. (2002): Reconstruction of I-131 in milk and exposure doses to the thyroid gland of cattle after the Chernobyl AES. Radiats. Biol. Radioecol., 42, 564-568
22 Hayata, I., Wang, C., Zhang, W., Chen, D., Minamihisamatsu, M., Morishima, H., Yuan, Y., Wei, L. and Sugahara, T. (2000): Chromosome translocation in residents of the high background radiation areas in southern China. J. Radiat. Res. (Tokyo), 41 Suppl, 69-74   DOI   ScienceOn
23 Thomson, E.J. and Perry, P.E. (1988): The identification of micronucleated chromosomes: a possible assay for aneuploidy. Mutagenesis, 3, 415-418   DOI   ScienceOn
24 Ghiassi-Nejad, M., Zakeri, F., Assaei, R.G. and Kariminia, A. (2004): Long-term immune and cytogenetic effects of high level natural radiation on Ramsar inhabitants in Iran. J. Environ. Radioact., 74, 107-116   DOI   ScienceOn
25 안병균 (1999): 중부지역 환경방사선의 분석. 과학교육연구논총, 15, 37-42
26 Tempel, K. (1997): Chernobyl and its consequences-some veterinary medical points of view. Tierarztl. Prax. Ausg. G. Grosstiere. Nutztiere., 25, 401-405
27 Streffer, C., Müller, W.U., Kryscio, A. and Böcker, W. (1998): Micronuclei-biological indicator for retrospective dosimetry after exposure to ionizing radiation. Mutat. Res., 404, 101-105   DOI
28 Shliakhtenok, A.S. (2003): Dynamics of $^{134+137}Cs$ accumulation in insects inhabiting the 30-kilometer zone of Chernobyl Nuclear Power Station. Radiats. Biol. Radioecol., 43, 93-96
29 Kim, S.R., Kim, T.H., Ryu, S.Y., Lee, H.J., Oh, H., Jo, S.K., Oh, K.S., Park, I.C., Kim, J.C., Kang, C.M. and Kim, S.H. (2003): Measurement of micronuclei by cytokinesis-block method in human, cattle, goat, pig, rabbit, chicken and fish peripheral blood lymphocytes irradiated in vitro with gamma radiation. In Vivo, 17, 433-438