Browse > Article

Assessment of In Vitro Assay System for Thyroid Hormone Disruptors Using Rat Pituitary GH3 Cells  

Kim, Hee-Jin (Laboratory of Molecular Toxicology, College of Pharmacy, Pusan National University)
Park, Hae-Young (Laboratory of Molecular Toxicology, College of Pharmacy, Pusan National University)
Kim, Jeong-A (Laboratory of Molecular Toxicology, College of Pharmacy, Pusan National University)
Kang, Il-Hyun (National Institute of Toxicological Research, Korea Food and Drug Administration)
Kim, Tae-Sung (National Institute of Toxicological Research, Korea Food and Drug Administration)
Han, Soon-Young (National Institute of Toxicological Research, Korea Food and Drug Administration)
Kang, Tae-Seok (National Institute of Toxicological Research, Korea Food and Drug Administration)
Park, Kui-Lea (National Institute of Toxicological Research, Korea Food and Drug Administration)
Kim, Hyung-Sik (Laboratory of Molecular Toxicology, College of Pharmacy, Pusan National University)
Publication Information
Toxicological Research / v.22, no.4, 2006 , pp. 307-313 More about this Journal
Abstract
The development of in vitro assays has been recommended to screening and testing the potential endocrine disruptors (EDs). These assay systems focus only on identifying the estrogenic or antiestrogenic activity of EDs, whereas a few studies have been carried out to screen the thyroid hormone (TH) disruptors. The aim of this study was to evaluate a test system to detect TH disruptors using rat pituitary tumor $GH_3$ cells. The test system is based on the TH-dependent increase in growth rate. As expected, L-3,5,3-triiodothyronine ($(T_3)$ markedly induced a morphological change in $GH_3$ cells from flattened fibroblastic types to rounded or spindle-shaped types. $T_3$ stimulated $GH_3$ cell growth in a dose-dependent manner with the maximum growth-stimulating effect being observed at a concentration $1{\times}10^9M$. In addition, $T_3$ increased the release of growth hormone and prolactin into the medium of the $GH_3$ cells culture. Using this assay system, the TH-disrupting activities of bisphenol A (BPA) and its related compounds were examined. BPA, dimethy/bisphenol A (DMBPA), and TCI-EP significantly enhanced the growth of $GH_3$ cells in the range of $1{\times}10^{-5}M\;to\;1{\times}10^{-6}M$ concentrations. In conclusion, this in vitro assay system might be useful for identifying potential TH disruptors. However, this method will require further evaluation and standardization before it can be used as a broad-based screening tool.
Keywords
Endocrine disruptors; Pituitary $GH_3$ cells proliferation; Thyroid hormone; Growth hormone; Prolactin;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bernal, J., Guadano-Ferraz, A. and Morte, B. (2003): Perspectives in the study of thyroid hormone action on brain deve lopment and function. Thyroid, 13, 1005-1012   DOI   ScienceOn
2 Gutleb, A.C., Meerts, I.A., Bergsma, J.H. Schriks, M. and Murk, A.J. (2005): T-Screen as a tool to identify thyroid hormone receptor active compounds. Environ. Toxicol. Pharmacol., 19, 231-238   DOI   ScienceOn
3 Henneman, G. (1999): Thyroid hormone metabolism, Marcel Dekker, Inc., New York, pp. 503-533
4 Hinkle, P.M. and Kinsella, P.A. (1986): Thyroid hormone induction of an autocrine growth factor secreted by pituitary tumor cells. Science, 234, 1549-1552   DOI
5 Hohenwarter, O., Waltenberger, A. and Katinger, H. (1996): An in vitro test system for thyroid hormone action. Anal. Biochem., 234, 56-59   DOI   ScienceOn
6 Lans, M.C., Spiertz, C., Brouwer, A. and Koeman, J.H. (1994): Different competition of thyroxine binding to transthyretin and thyroxine-binding globulin by hydroxy-PCBs, PCDDs and PCDFs. Eur. J. Pharmacol., 270, 129-136
7 Kelce, W.R. and Wilson, E.M. (1997): Environmental antiandrogens: developmental effects, molecular mechanisms, and clinical implications. J. Mol. Med., 75, 198-207   DOI
8 Darnerud, P.O. (2003): Toxic effects of brominated flame retardants in man and in wildlife. Environ. Int., 29, 841-853   DOI   ScienceOn
9 Miyazaki, W., Iwasaki, T., Takeshita, A., Kuroda, Y. and Koibuchi, N. (2004): Polychlorinated biphenyls suppress thyroid hormone receptor-mediated transcription through a novel mechanism. J. Biol. Chem., 279, 18195-18202   DOI   ScienceOn
10 Zoeller, T.R., Dowling, A.L., Herzig, C.T., Iannacone, E.A., Gauger, K.J. and Bansal, R. (2002): Thyroid hormone, brain development, and the environment. Environ. Health Perspect., 110, 355-361   DOI   ScienceOn
11 Gauger, K.J., Kato, Y., Haraguchi, K., Lehmler, H.J., Robertson, L.W., Bansal R. and Zoeller, R.T. (2004): Polychlorinated biphenyls (PCBs) exert thyroid hormone-like effects in the fetal rat brain but do not bind to thyroid hormone receptors. Environ. Health Perspect., 112, 516-523   DOI   ScienceOn
12 Brucker-Davis, F. (1998): Effects of environmental synthetic chemicals on thyroid function. Thyroid, 8, 827-856   DOI   ScienceOn
13 Iwasaki, T., Miyazaki, W., Takeshita, A., Kuroda, Y. and Koibuchi, N. (2002): Polychlorinated biphenyls suppress thyroid hormone-induced transactivation. Biochem. Biophys. Res. Commun., 299, 384-388   DOI   ScienceOn
14 Colborn, T. (2002): Clues from wildlife to create an assay for thyroid system disruption. Environ. Health Perspect., 110, 363-367   DOI   ScienceOn
15 Kitamura, S., Jinno, N., Ohta, S., Kuroki, H. and Fujimoto, N. (2002): Thyroid hormonal activity of the flame retardants tetrabromobisphenol A and tetrachlorobisphenol A. Biochem. Biophys. Res. Commun., 293, 554-559   DOI   ScienceOn
16 Kitamura, S., Kato, T., Iida, M., Jinno, N., Suzuki, T., Ohta, S., Fujimoto, N., Hanada, H., Kashiwagi, K. and Kashiwagi, A. (2005): Anti-thyroid hormonal activity of tetrabromobisphenol A, a flame retardant, and related compounds: affinity to the mammalian thyroid hormone receptor, and effect on tadpole metamorphosis. Life Sci., 76, 1589-1601   DOI   ScienceOn
17 Porterfield, S.P. (2000): Thyroidal dysfunction and environmental chemicals-potential impact on brain development. Environ. Health Perspect., 108, 433-438   DOI
18 O'Connor, J.C., Cook, J.C., Marty, M.S., Davis, L.G., Kaplan, A.M. and Carney, E.W. (2002): Evaluation of Tier I screening approaches for detecting endocrine-active compounds (EACs). Crit. Rev. Toxicol., 32, 521-549   DOI   ScienceOn
19 Leung, H.W., Paustenbach, D.J., Murray, F.J. and Andersen, M.E. (1990): A physiological pharmacokinetic description of the tissue distribution and enzyme-inducing properties of 2,3,7,8-tetrachlorodibenzo-p-dioxin in the rat. Toxicol. Appl. Pharmacol., 103, 399-410   DOI   ScienceOn
20 Zoeller, R.T. Bansal, R. and Parris, C. (2004): Bisphenol-A, an environmental contaminant that acts as a thyroid hormone receptor antagonist in vitro, increases serum thyroxine and alters RC3/neurogranin expression in the developing rat brain. Endocrinology, 146, 607-612   DOI   ScienceOn
21 Vos, J.G., Dybing, E., Greim, H.A., Ladefoged, O., Lambre, C., Tarazona, J.V., Brandt, I. and Vethaak, A.D. (2000): Health effects of endocrine-disrupting chemicals on wildlife, with special reference to the European situation. Crit. Rev. Toxicol., 30, 71-133   DOI   ScienceOn
22 Andersen, H.R., Vinggaard, A.M., Rasmussen, T.H., Gjermandsen I.M. and Bonefeld-Jorgensen, E.C. (2002): Effects of currently used pesticides in assays for estrogenicity, androgenicity, and aromatase activity in vitro. Toxicol. Appl. Pharmacol., 179, 1-12   DOI   ScienceOn
23 Legrand, J. (1986): Thyroid hormone effects on growth and development. Thyroid Hormone Metabolism, Marcel Dekker, Inc., New York, pp. 503-534
24 Zhang, J. and Lazar, M.A. (2000): The mechanism of action of thyroid hormones. Annu. Rev. Physiol., 62, 439-466   DOI   ScienceOn
25 Gray, L.E. Jr. and Ostby, J. (1998): Effects of pesticides and toxic substances on behavioral and morphological reproductive development: endocrine versus nonendocrine mechanisms. Toxicol Ind. Health, 14, 159-184   DOI
26 Meerts, I.A., van Zanden, J.J., Luijks, E.A., van Leeuwen-Bol, I., Marsh, G., Jakobsson, E., Bergman, A. and Brouwer, A. (2000): Potent competitive interactions of some brominated flame retardants and related compounds with human transthyretin in vitro. Toxicol. Sci., 56, 95-104   DOI   ScienceOn
27 Moriyama, K., Tagami, T., Akamizu, T., Usui, T., Saijo, M., Kanamoto, N., Hataya, Y., Shimatsu, A., Kuzuya, H. and Nakao, K. (2002): Thyroid hormone action is disrupted by bisphenol A as an antagonist. J. Clin. Endocrinol. Metab., 87, 5185–5190
28 Bigsby, R., Chapin, R.E., Daston, G.P., Davis, B.J., Gorski, J., Gray, L.E., Howdeshell, K.L., Zoeller, R.T. and vom Saal, F.S. (2003): Evaluating the effects of endocrine disruptors on endocrine function during development. Environ. Health Perspect., 107, 613-618
29 Gray, L.E. Jr. (1998): Xenoendocrine disrupters: laboratory studies on male reproductive effects. Toxicol. Lett., 102-103, 331-335
30 Samuels, H.H., Forman, B.M., Horowitz, Z.D. and Ye, Z.S. (1988): Regulation of gene expression by thyroid hormone. J. Clin. Invest., 81, 957-967   DOI   ScienceOn
31 Oppenheimer, J.H. and Schwartz, H.L. (1997): Molecular basis of thyroid hormone-dependent brain development. Endocr. Rev., 18, 462-475   DOI   ScienceOn
32 Brouwer, A.V.D., Berg, K.J., Blaner W.S. and Goodman, D.S. (1996): Transthyretin (prealbumin) binding of PCBs, a model for the mechanism of interference with vitamin A and thyroid hormone metabolism. Chemosphere, 15, 1699-1706
33 O'Connor, J.C., Davis, L.G., Frame, S.R. and Cook, J.C. (2000): Evaluation of a Tier I screening battery for detecting endocrine-active compounds (EACs) using the positive controls testosterone, coumestrol, progesterone, and RU486. Toxicol. Sci., 54, 338-354   DOI   ScienceOn