Browse > Article
http://dx.doi.org/10.1038/s12276-018-0188-9

The emerging role of lncRNAs in inflammatory bowel disease  

Yarani, Reza (Type 1 Diabetes Biology, Department of Clinical Research, Steno Diabetes Center Copenhagen)
Mirza, Aashiq H. (Department of Pharmacology, Weill Cornell Medicine, Cornell University)
Kaur, Simranjeet (Type 1 Diabetes Biology, Department of Clinical Research, Steno Diabetes Center Copenhagen)
Pociot, Flemming (Type 1 Diabetes Biology, Department of Clinical Research, Steno Diabetes Center Copenhagen)
Publication Information
Experimental and Molecular Medicine / v.50, no.12, 2018 , pp. 7.1-7.14 More about this Journal
Abstract
Dysregulation of long noncoding RNA (lncRNA) expression is linked to the development of various diseases. Recently, an emerging body of evidence has indicated that lncRNAs play important roles in the pathogenesis of inflammatory bowel diseases (IBDs), including Crohn's disease (CD) and ulcerative Colitis (UC). In IBD, lncRNAs have been shown to be involved in diverse processes, including the regulation of intestinal epithelial cell apoptosis, association with lipid metabolism, and cell-cell interactions, thereby enhancing inflammation and the functional regulation of regulatory T cells. In this review, we aim to summarize the current knowledge regarding the role of lncRNAs in IBD and highlight potential avenues for future investigation. We also collate potentially immune-relevant, IBD-associated lncRNAs identified through a built-by association analysis with respect to their neighboring protein-coding genes within IBD-susceptible loci. We further underscore their importance by highlighting their enrichment for various aspects of immune system regulation, including antigen processing/presentation, immune cell proliferation and differentiation, and chronic inflammatory responses. Finally, we summarize the potential of lncRNAs as diagnostic biomarkers in IBD.
Keywords
Citations & Related Records
연도 인용수 순위
  • Reference
1 Tuo, Y. L., Li, X. M. & Luo, J. Long noncoding RNA UCA1 modulates breast cancer cell growth and apoptosis through decreasing tumor suppressive miR-143. Eur. Rev. Med. Pharmacol. Sci. 19, 3403-3411 (2015).
2 Na, X. Y., Liu, Z. Y., Ren, P. P., Yu, R. & Shang, X. S. Long non-coding RNA UCA1 contributes to the progression of prostate cancer and regulates proliferation through KLF4-KRT6/13 signaling pathway. Int. J. Clin. Exp. Med. 8, 12609-12616 (2015).
3 Chen, D. et al. Plasma long noncoding RNA expression profile identified by microarray in patients with Crohn's disease. World J. Gastroenterol. 22, 4716-4731 (2016).   DOI
4 Bakirtzi, K. et al. Neurotensin promotes the development of colitis and intestinal angiogenesis via HIF-1${\alpha}$-miR-210 signaling. J. Immunol. 196, 4311-4321 (2016).   DOI
5 Castagliuolo, I. et al. Neurotensin is a proinflammatory neuropeptide in colonic inflammation. J. Clin. Invest. 103, 843-849 (1999).   DOI
6 Gui, X., Liu, S., Yan, Y. & Gao, Z. Neurotensin receptor 1 overexpression in inflammatory bowel diseases and colitis-associated neoplasia. World J. Gastroenterol. 19, 4504-4510 (2013).   DOI
7 Koon, H.-W. et al. Neurotensin induces IL-6 secretion in mouse preadipocytes and adipose issues during 2,4,6,-trinitrobenzensulphonic acid-induced colitis. Proc. Natl. Acad. Sci. USA 106, 8766-8771 (2009).   DOI
8 Law, I. K. M. & Pothoulakis, C. MicroRNA-133${\alpha}$ regulates neurotensin-associated colonic inflammation in colonic epithelial cells and experimental colitis. RNA Dis. 2, e472 (2015).
9 Cao, Y., Shi, H., Ren, F., Jia, Y. & Zhang, R. Long non-coding RNA CCAT1 promotes metastasis and poor prognosis in epithelial ovarian cancer. Exp. Cell Res. 359, 185-194 (2017).   DOI
10 Han, Y. et al. UCA1, a long non-coding RNA up-regulated in colorectal cancer influences cell proliferation, apoptosis and cell cycle distribution. Pathology 46, 396-401 (2014).   DOI
11 Deng, L., Yang, S. B., Xu, F. F. & Zhang, J. H. Long noncoding RNA CCAT1 promotes hepatocellular carcinoma progression by functioning as let-7 sponge. J. Exp. Clin. Cancer Res. 34, 18 (2015).   DOI
12 Xue, M., Chen, W. & Li, X. Urothelial cancer associated 1: a long noncoding RNA with a crucial role in cancer. J. Cancer Res. Clin. Oncol. 142, 1407-1419 (2016).   DOI
13 Zheng, Q. et al. Aberrant expression of UCA1 in gastric cancer and its clinical significance. Clin. Transl. Oncol. 17, 640-646 (2015).   DOI
14 Huang, J. et al. Long non-coding RNA UCA1 promotes breast tumor growth by suppression ofp27 (Kip1). Cell Death Dis. 5, e1008 (2014).   DOI
15 Zheng, J. et al. Long nonding RNA UCA1 regulates neural stem cell differentiation by controlling miR-1/Hes1 expression. Am. J. Transl. Res. 9, 3696-3704 (2017).
16 Tsitsiou, E. et al. Transcriptome analysis shows activation of circulating CD8+ T cells in patients with severe asthma. J. Allergy Clin. Immunol. 129, 95-103 (2012).   DOI
17 Zou, T. et al. H19 long noncoding RNA regulates intestinal epithelial barrier function via microRNA 675 by interacting with RNA-binding protein HuR. Mol. Cell. Biol. 36, 1332-1341 (2016).   DOI
18 Law, I. K. M. et al. Neurotensin-regulated miR-133${\alpha}$ is involved in proinflammatory signalling in human colonic epithelial cells and in experimental colitis. Gut 64, 1095-1104 (2015).   DOI
19 Law, I. K. M., Padua, D. M., Iliopoulos, D. & Pothoulakis, C. Long non-coding RNA (LNCRNA) profiling reveals overexpression of UCA1 and CCAT1 in human colonocytes stimulated by neurotensin and in colonic mucosal tissues from ulcerative colitis (UC) patients. Gastroenterology 152, S143-S144 (2017).
20 Li, B. et al. Transcriptome analysis of psoriasis in a large case-control sample: RNA-seq provides insights into disease mechanisms. J. Invest. Dermatol. 134, 1828-1838 (2014).   DOI
21 Xu, X. M. & Zhang, H. J. miRNAs as new molecular insights into inflammatory bowel disease: crucial regulators in autoimmunity and inflammation. World J. Gastroenterol. 22, 2206-2218 (2016).   DOI
22 Schaefer, J. S. MicroRNAs: how many in inflammatory bowel disease? Curr. Opin. Gastroenterol. 32, 258-266 (2016).   DOI
23 Kalla, R. et al. MicroRNAs: new players in IBD. Gut 64, 504-517 (2015).   DOI
24 Qiao, Y. Q. et al. LncRNA DQ786243 affects Treg related CREB and Foxp3 expression in Crohn's disease. J. Biomed. Sci. 20, 87 (2013).   DOI
25 Song, J. et al. PBMC and exosome-derived Hotair is a critical regulator and potent marker for rheumatoid arthritis. Clin. Exp. Med. 15, 121-126 (2015).   DOI
26 Sun, L. et al. LncRNA DQ786243 contributes to proliferation and metastasis of colorectal cancer both in vitro and in vivo. Biosci. Rep. 36, e00328 (2016).   DOI
27 Zhou, X. et al. Long non-coding RNA ANRIL regulates inflammatory responses as a novel component of NF-${\kappa}$B pathway. RNA Biol. 13, 98-108 (2016).   DOI
28 Congrains, A., Kamide, K., Ohishi, M. & Rakugi, H. ANRIL: molecularmechanisms and implications in human health. Int. J. Mol. Sci. 14, 1278-1292 (2013).   DOI
29 Li, H., Ma, S.-Q., Huang, J., Chen, X.-P. & Zhou, H.-H. Roles of long noncoding RNAs in colorectal cancer metastasis. Oncotarget 8, 39859-39876 (2017).
30 Schmitt, A. M. & Chang, H. Y. Long noncoding RNAs in cancer pathways. Cancer Cell 29, 452-463 (2016).   DOI
31 Bindea, G. et al. ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 25, 1091-1093 (2009).   DOI
32 Iborra, M., Bernuzzi, F., Invernizzi, P. & Danese, S. MicroRNAs in autoimmunity and inflammatory bowel disease: crucial regulators in immune response. Autoimmun. Rev. 11, 305-314 (2012).   DOI
33 Hrdlickova, B. et al. Expression profiles of long non-coding RNAs located in autoimmune disease-associated regions reveal immune cell-type specificity. Genome Med. 6, 88 (2014).   DOI
34 Pekow, J. R. & Kwon, J. H. MicroRNAs in inflammatory bowel disease. Inflamm. Bowel Dis. 18, 187-193 (2012).   DOI
35 Edgington-Mitchell, L. E. Long noncoding RNAs: novel links to inflammatory bowel disease? Am. J. Physiol. Gastrointest. Liver Physiol. 311, G444-G445 (2016).   DOI
36 Zacharopoulou, E., Gazouli, M., Tzouvala, M., Vezakis, A. & Karamanolis, G. The contribution of long non-coding RNAs in inflammatory bowel diseases. Dig. Liver Dis. 49, 1067-1072 (2017).   DOI
37 Eyre, T. A., Wright, M. W., Lush, M. J. & Bruford, E. A. HCOP: a searchable database of human orthology predictions. Brief. Bioinform. 8, 2-5 (2007).
38 Hezroni, H. et al. Principles of long noncoding RNA evolution derived from direct comparison of transcriptomes in 17 species. Cell Rep. 11, 1110-1122 (2015).   DOI
39 Seemann, S. E. et al. The identification and functional annotation of RNA structures conserved in vertebrates. Genome Res. 27, 1371-1383 (2017).   DOI
40 Baumgart, D. C. & Sandborn, W. J. Crohn’s disease. Lancet 380, 1590-1605 (2012).   DOI
41 Kappelman, M. D. et al. The prevalence and geographic distribution of Crohn's disease and ulcerative colitis in the United States. Clin. Gastroenterol. Hepatol. 5, 1424-1429 (2007).   DOI
42 Danese, S. & Fiocchi, C. Ulcerative colitis. N. Engl. J. Med. 365, 1713-1725 (2011).   DOI
43 Haberman, Y. et al. Long ncRNA landscape in the ileum of treatment-naive early-onset Crohn Disease. Inflamm. Bowel Dis. 24, 346-360 (2018).   DOI
44 Cunnington, M. S., Santibanez Koref, M., Mayosi, B. M., Burn, J. & Keavney, B. Chromosome 9p21 SNPs associated with multiple disease phenotypes correlate with ANRIL expression. PLoS Genet. 6, e1000899 (2010).   DOI
45 Pasmant, E., Sabbagh, A., Vidaud, M. & Bieche, I. ANRIL, a long, noncoding RNA, is an unexpected major hotspot in GWAS. FASEB J. 25, 444-448 (2011).   DOI
46 Mirza, A. H. et al. Transcriptomic landscape of lncRNAs in inflammatory bowel disease. Genome Med. 7, 39 (2015).   DOI
47 Burd, C. E. et al. Expression of linear and novel circular forms of an INK4/ARFassociated non-coding RNA correlates with atherosclerosis risk. PLoS Genet 6, e1001233 (2010).   DOI
48 Rankin, C. R., Iliopoulos, D., Pothoulakis, C. & Padua, D. M. Gene expression profiling identifies CDKN2B-AS1 as a long non-coding RNA associated with IBD and regulated by TGF-beta. Gastroenterology 152, S144 (2017).
49 Aguilo, F., Di Cecilia, S. & Walsh, M. J. Long non-coding RNA ANRIL and polycomb in human cancers and cardiovascular disease. Curr. Top. Microbiol. Immunol. 394, 29-39 (2016).
50 Wang, H. et al. Circulating microRNA223 is a new biomarker for inflammatory bowel disease. Medicine (Baltim.) 95, e2703 (2016).   DOI
51 Jostins, L. et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 491, 119-124 (2012).   DOI
52 Ward, M., McEwan, C., Mills, J. D. & Janitz, M. Conservation and tissue-specific transcription patterns of long noncoding RNAs. J. Hum. Transcr. 1, 2-9 (2015).   DOI
53 Pothoulakis, C., Iliopoulos, D., Rankin, R. & Padua, D. P-307 the long non-coding RNA, CDKN2B-AS1, Is associated with IBD and is downregulated by TGF-beta. Inflamm. Bowel Dis. 23, S98-S98 (2017).
54 Roussel, M. F. The INK4 family of cell cycle inhibitors in cancer. Oncogene 18, 5311-5317 (1999).   DOI
55 Padua, D. et al. A long noncoding RNA signature for ulcerative colitis identifies IFNG-AS1 as an enhancer of inflammation. Am. J. Physiol. Gastrointest. Liver Physiol. 311, G446-G457 (2016).   DOI
56 Mirza, A. H., Kaur, S., Brorsson, C. A. & Pociot, F. Effects of GWAS-associated genetic variants on lncRNAs within IBD and T1D candidate loci. PLoS ONE 9, e105723 (2014).   DOI
57 Mokry, M. et al. Many inflammatory bowel disease risk loci include regions that regulate gene expression in immune cells and the intestinal epithelium. Gastroenterology 146, 1040-1047 (2014).   DOI
58 Soubieres, A. A. & Poullis, A. Emerging role of novel biomarkers in the diagnosis of inflammatory bowel disease. World J. Gastrointest. Pharmacol. Ther. 7, 41-50 (2016).   DOI
59 Bolha, L., Ravnik-Glavac, M. & Glavac, D. Long noncoding RNAs as biomarkers in cancer. Dis. Markers 2017, 7243968 (2017).
60 Dai, M. et al. Meta-signature LncRNAs serve as novel biomarkers for colorectal cancer: integrated bioinformatics analysis, experimental validation and diagnostic evaluation. Sci. Rep. 7, 46572 (2017).   DOI
61 Greco, S., Salgado Somoza, A., Devaux, Y. & Martelli, F. Long noncoding RNAs and cardiac disease. Antioxid. Redox. Signal. 29, 880-901 (2018).   DOI
62 Kumar, M. M. & Goyal, R. LncRNA as a therapeutic target for angiogenesis. Curr. Top. Med. Chem. 17, 1750-1757 (2017).   DOI
63 Parasramka, M. A., Maji, S., Matsuda, A., Yan, I. K. & Patel, T. Long non-coding RNAs as novel targets for therapy in hepatocellular carcinoma. Pharmacol. Ther. 161, 67-78 (2016).   DOI
64 Khor, B., Gardet, A. & Xavier, R. J. Genetics and pathogenesis of inflammatory bowel disease. Nature 474, 307-317 (2011).   DOI
65 McGovern, D. P., Kugathasan, S. & Cho, J. H. Genetics of inflammatory bowel diseases. Gastroenterology 149, 1163-1176 (2015). e1162.   DOI
66 Cho, J. H. & Brant, S. R. Recent insights into the genetics of inflammatory bowel disease. Gastroenterology 140, 1704-1712 (2011).   DOI
67 Uhlig, H. H. et al. The diagnostic approach to monogenic very early onset inflammatory bowel disease. Gastroenterology 147, 990-1007 (2014). e1003.   DOI
68 Djebali, S. et al. Landscape of transcription in human cells. Nature 489, 101-108 (2012).   DOI
69 Chen, L. L. Linking long noncoding RNA localization and function. Trends Biochem. Sci. 41, 761-772 (2016).   DOI
70 Qu, K. et al. Individuality and variation of personal regulomes in primary human T cells. Cell Syst. 1, 51-61 (2015).   DOI
71 Peng, H. et al. The long noncoding RNA IFNG-AS1 promotes T helper type 1 cells response in patients with Hashimoto's thyroiditis. Sci. Rep. 5, 17702 (2015).
72 Collier, S. P., Collins, P. L., Williams, C. L., Boothby, M. R. & Aune, T. M. Cutting edge: influence of Tmevpg1, a long intergenic noncoding RNA, on the expression of Ifng by Th1 cells. J. Immunol. 189, 2084-2088 (2012).   DOI
73 Berube, J. C. et al. Identification of susceptibility genes of adult asthma in French Canadian women. Can. Respir. J. 2016, 3564341 (2016).
74 Collier, S. P., Henderson, M. A., Tossberg, J. T. & Aune, T. M. Regulation of the Th1 genomic locus from Ifng through Tmevpg1 by T-bet. J. Immunol. 193, 3959-3965 (2014).   DOI
75 Quinn, J. J. & Chang, H. Y. Unique features of long non-coding RNA biogenesis and function. Nat. Rev. Genet. 17, 47-62 (2016).
76 Kaikkonen, M. U., Lam, M. T. & Glass, C. K. Non-coding RNAs as regulators of gene expression and epigenetics. Cardiovasc. Res. 90, 430-440 (2011).   DOI
77 Wu, F., Huang, Y., Dong, F. & Kwon, J. H. Ulcerative colitis-associated long noncoding RNA, BC012900, regulates intestinal epithelial cell apoptosis. Inflamm. Bowel Dis. 22, 782-795 (2016).   DOI
78 Fatica, A. & Bozzoni, I. Long non-coding RNAs: new players in cell differentiation and development. Nat. Rev. Genet. 15, 7-21 (2014).
79 Mercer, T. R., Dinger, M. E. & Mattick, J. S. Long non-coding RNAs: insights into functions. Nat. Rev. Genet. 10, 155-159 (2009).   DOI
80 Mirza, A. H., Kaur, S. & Pociot, F. Long non-coding RNAs as novel players in beta cell function and type 1 diabetes. Hum. Genom. 11, 17 (2017).   DOI
81 Chen, S. W. et al. Effect of long noncoding RNA H19 overexpression on intestinal barrier function and its potential role in the pathogenesis of ulcerative colitis. Inflamm. Bowel Dis. 22, 2582-2592 (2016).   DOI
82 Teixeira, L. K., Fonseca, B. P., Barboza, B. A. & Viola, J. P. The role of interferongamma on immune and allergic responses. Mem. Inst. Oswaldo Cruz 100 (Suppl. 1), 137-144 (2005).
83 Raveh, E., Matouk, I. J., Gilon, M. & Hochberg, A. The H19 Long non-coding RNA in cancer initiation, progression and metastasis - a proposed unifying theory. Mol. Cancer 14, 184 (2015).   DOI
84 Matouk, I. J. et al. The H19 non-coding RNA is essential for human tumor growth. PLoS ONE 2, e845 (2007).   DOI
85 Mousa, A., Misso, M., Teede, H., Scragg, R. & de Courten, B. Effect of vitamin D supplementation on inflammation: protocol for a systematic review. BMJ Open 6, e010804 (2016).   DOI
86 Mourtada-Maarabouni, M., Hedge, V. L., Kirkham, L., Farzaneh, F. & Williams, G. T. Growth arrest in human T-cells is controlled by the non-coding RNA growth-arrest-specific transcript 5 (GAS5). J. Cell Sci. 121, 939-946 (2008).   DOI
87 Bakirtzi, K. et al. Neurotensin signaling activates microRNAs-21 and -155 and Akt, promotes tumor growth in mice, and is increased in human colon tumors. Gastroenterology 141, 1749-1761 (2011). e1741.   DOI
88 Chen, L., Hu, N., Wang, C., Zhao, H. & Gu, Y. Long non-coding RNA CCAT1 promotes multiple myeloma progression by acting as a molecular sponge of miR-181a-5p to modulate HOXA1 expression. Cell Cycle (Georget., Tex.) 17, 319-329 (2018).   DOI
89 Wang, S. et al. KIF9AS1, LINC01272 and DIO3OS lncRNAs as novel biomarkers for inflammatory bowel disease. Mol. Med. Rep. 17, 2195-2202 (2018).
90 Lucafo, M. et al. Role of the long non-coding RNA growth arrest-specific 5 in glucocorticoid response in children with inflammatory bowel disease. Basic Clin. Pharmacol. Toxicol. 122, 87-93 (2018).   DOI
91 Barnes, P. J. & Adcock, I. M. Glucocorticoid resistance in inflammatory diseases. Lancet 373, 1905-1917 (2009).   DOI
92 Kino, T., Hurt, D. E., Ichijo, T., Nader, N. & Chrousos, G. P. Noncoding RNA gas5 is a growth arrest- and starvation-associated repressor of the glucocorticoid receptor. Sci. Signal. 3, ra8 (2010).
93 Heery, R., Finn, S. P., Cuffe, S. & Gray, S. G. Long non-coding RNAs: key regulators of epithelial-mesenchymal transition, tumour drug resistance and cancer stem cells. Cancers 9, 38 (2017).   DOI
94 Tani, H., Torimura, M. & Akimitsu, N. The RNA degradation pathway regulates the function of GAS5 a non-coding RNA in mammalian cells. PLOS ONE 8, e55684 (2013).   DOI
95 Steck, E. et al. Regulation of H19 and its encoded microRNA-675 in osteoarthritis and under anabolic and catabolic in vitro conditions. J. Mol. Med. (Berl.) 90, 1185-1195 (2012).   DOI