Browse > Article
http://dx.doi.org/10.1038/s12276-018-0194-y

A plasma circulating miRNAs profile predicts type 2 diabetes mellitus and prediabetes: from the CORDIOPREV study  

Jimenez-Lucena, Rosa (Lipids and Atherosclerosis Unit, Reina Sofia University Hospital)
Camargo, Antonio (Lipids and Atherosclerosis Unit, Reina Sofia University Hospital)
Alcala-Diaz, Juan Francisco (Lipids and Atherosclerosis Unit, Reina Sofia University Hospital)
Romero-Baldonado, Cristina (Biochemical Laboratory, Reina Sofia University Hospital)
Luque, Raul Miguel (IMIBIC/Reina Sofia University Hospital, University of Cordoba and CIBER Fisiopatologia de la Obesidad y la Nutricion (CIBEROBN), Instituto de Salud Carlos III)
van Ommen, Ben (Netherlands Institute for Applied Science (TNO), Research Group Microbiology and Systems Biology)
Delgado-Lista, Javier (Lipids and Atherosclerosis Unit, Reina Sofia University Hospital)
Ordovas, Jose Maria (Nutrition and Genomics Laboratory, J.M, US Department of Agriculture Human Nutrition Research Center on Aging, Tufts University)
Perez-Martinez, Pablo (Lipids and Atherosclerosis Unit, Reina Sofia University Hospital)
Rangel-Zuniga, Oriol Alberto (Lipids and Atherosclerosis Unit, Reina Sofia University Hospital)
Lopez-Miranda, Jose (Lipids and Atherosclerosis Unit, Reina Sofia University Hospital)
Publication Information
Experimental and Molecular Medicine / v.50, no.12, 2018 , pp. 13.1-13.12 More about this Journal
Abstract
We aimed to explore whether changes in circulating levels of miRNAs according to type 2 diabetes mellitus (T2DM) or prediabetes status could be used as biomarkers to evaluate the risk of developing the disease. The study included 462 patients without T2DM at baseline from the CORDIOPREV trial. After a median follow-up of 60 months, 107 of the subjects developed T2DM, 30 developed prediabetes, 223 maintained prediabetes and 78 remained disease-free. Plasma levels of four miRNAs related to insulin signaling and beta-cell function were measured by RT-PCR. We analyzed the relationship between miRNAs levels and insulin signaling and release indexes at baseline and after the follow-up period. The risk of developing disease based on tertiles (T1-T2-T3) of baseline miRNAs levels was evaluated by COX analysis. Thus, we observed higher miR-150 and miR-30a-5p and lower miR-15a and miR-375 baseline levels in subjects with T2DM than in disease-free subjects. Patients with high miR-150 and miR-30a-5p baseline levels had lower disposition index (p = 0.047 and p = 0.007, respectively). The higher risk of disease was associated with high levels (T3) of miR-150 and miR-30a-5p ($HR_{T3-T1}=4.218$ and $HR_{T3-T1}=2.527$, respectively) and low levels (T1) of miR-15a and miR-375 ($HR_{T1-T3}=3.269$ and $HR_{T1-T3}=1.604$, respectively). In conclusion, our study showed that deregulated plasma levels of miR-150, miR-30a-5p, miR-15a, and miR-375 were observed years before the onset of T2DM and pre-DM and could be used to evaluate the risk of developing the disease, which may improve prediction and prevention among individuals at high risk for T2DM.
Keywords
Citations & Related Records
연도 인용수 순위
  • Reference
1 United Nations. Political Declaration of the High-Level Meeting of the General Assembly on the Prevention and Control of Noncommunicable Diseases. (Sixtysixth session of the United Nations General Assembly, New York, 2011).
2 Prentki, M. & Nolan, C. J. Islet beta cell failure in type 2 diabetes. J. Clin. Invest. 116, 1802-1812 (2006).   DOI
3 Danese, E. et al. Reference miRNAs for colorectal cancer: analysis and verification of current data. Sci. Rep. 7, 8413 (2017).   DOI
4 Abdul-Ghani, M. A., Matsuda, M., Balas, B. & DeFronzo, R. A. Muscle and liver insulin resistance indexes derived from the oral glucose tolerance test. Diabetes Care 30, 89-94 (2007).   DOI
5 De Spiegelaere, W. et al. Reference gene validation for RT-qPCR, a note on different available software packages. PLoS ONE 10, e0122515 (2015).   DOI
6 Burant, C. & Young, L. Medical Managements of Type 2 Diabetes Mellitus, 7th edn. (American Diabetes Association, Arlington, 2012).
7 Van Ommen, B., van der Greef, J., Ordovas, J. M. & Daniel, H. Phenotypic flexibility as key factor in the human nutrition and health relationship. Genes Nutr. 9, 423-431 (2014).   DOI
8 American Diabetes Association. Classification and diagnosis of diabetes. Diabetes Care 40, S11-S24 (2017).   DOI
9 Kanat, M. et al. Distinct beta-cell defects in mpaired fasting glucose and impaired glucose tolerance. Diabetes 61, 447-453 (2012).   DOI
10 Giugliano, D., Ceriello, A. & Esposito, K. Glucose metabolism and hyperglycemia. Am. J. Clin. Nutr. 87, 217S-222S (2008).   DOI
11 American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 32(Suppl 1), S62-S67 (2009).   DOI
12 Sebastiani, G. et al. Circulating microRNAs and diabetes mellitus: a novel tool for disease prediction, diagnosis, and staging? J. Endocrinol. Invest. 40, 591-610 (2017).   DOI
13 Seyhan, A. A. et al. Pancreas-enriched miRNAs are altered in the circulation of subjects with diabetes: a pilot cross-sectional study. Sci. Rep. 6, e31479 (2016).   DOI
14 Flynt, A. S. & Lai, E. C. Biological principles of microRNA-mediated regulation: shared themes amid diversity. Nat. Rev. Genet. 9, 831-842 (2008).
15 Jansen, F. et al. MicroRNA expression in circulating microvesicles predicts cardiovascular events in patients with coronary artery disease. J. Am. Heart Assoc. 3, e001249 (2014).
16 Kim, J. W. et al. miRNA-30a-5p-mediated silencing of Beta2/NeuroD expression is an important initial event of glucotoxicity-induced beta cell dysfunction in rodent models. Diabetologia 56, 847-855 (2013).   DOI
17 Karolina, D. S. et al. MicroRNA 144 impairs insulin signaling by inhibiting the expression of insulin receptor substrate 1 in type 2 diabetes mellitus. PLoS One 6, e22839 (2011).   DOI
18 Pfaffl, M. W., Tichopad, A., Prgomet, C. & Neuvians, T. P. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper--Excel-based tool using pair-wise correlations. Biotechnol. Lett. 26, 509-515 (2004).   DOI
19 Weber, J. A. et al. The microRNA spectrum in 12 body fluids. Clin. Chem. 56, 1733-1741 (2010).   DOI
20 Guay, C. & Regazzi, R. Circulating microRNAs as novel biomarkers for diabetes mellitus. Nat. Rev. Endocrinol. 9, 513-521 (2013).   DOI
21 Kantharidis, P., Wang, B., Carew, R. M. & Lan, H. Y. Diabetes complications: the microRNA perspective. Diabetes 60, 1832-1837 (2011).   DOI
22 Fernandez-Valverde, S. L., Taft, R. J. & Mattick, J. S. MicroRNAs in beta-cell biology, insulin resistance, diabetes and its complications. Diabetes 60, 1825-1831 (2011).   DOI
23 Tang, X., Tang, G. & Ozcan, S. Role of microRNAs in diabetes. Biochim. Biophys. Acta 1779, 697-701 (2008).   DOI
24 Chan, C. B. et al. Increased uncoupling protein-2 levels in beta-cells are associated with impaired glucose-stimulated insulin secretion: mechanism of action. Diabetes 50, 1302-1310 (2001).   DOI
25 Naya, F. J., Stellrecht, C. M. & Tsai, M. J. Tissue-specific regulation of the insulin gene by a novel basic helix-loop-helix transcription factor. Genes Dev. 9, 1009-1019 (1995).   DOI
26 Kim, J. W. et al. Transactivation of the mouse sulfonylurea receptor I gene by BETA2/NeuroD. Mol. Endocrinol. 16, 1097-1107 (2002).   DOI
27 Willeit, P. et al. Circulating MicroRNA-122 Is Associated With the Risk of New- Onset Metabolic Syndrome and Type 2 Diabetes. Diabetes 66, 347-357 (2017).   DOI
28 Karolina, D. S. et al. Circulating miRNA profiles in patients with metabolic syndrome. J. Clin. Endocrinol. Metab. 97, E2271-E2276 (2012).   DOI
29 Kong, L. et al. Significance of serum microRNAs in pre-diabetes and newly diagnosed type 2 diabetes: a clinical study. Acta Diabetol. 48, 61-69 (2011).   DOI
30 Chen, W. M. et al. Modulation of microRNA Expression in Subjects with Metabolic Syndrome and Decrease of Cholesterol Efflux from Macrophages via microRNA-33-Mediated Attenuation of ATP-Binding Cassette Transporter A1 Expression by Statins. PLoS. One. 11, e0154672 (2016).   DOI
31 Zampetaki, A. et al. Plasma microRNA profiling reveals loss of endothelial miR- 126 and other microRNAs in type 2 diabetes. Circ. Res. 107, 810-817 (2010).   DOI
32 Delgado-Lista, J. et al. CORonary Diet Intervention with Olive oil and cardiovascular PREVention study (the CORDIOPREV study): Rationale, methods, and baseline characteristics: a clinical trial comparing the efficacy of a Mediterranean diet rich in olive oil versus a low-fat diet on cardiovascular disease in coronary patients. Am. Heart J. 177, 42-50 (2016).   DOI
33 American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 34(Suppl 1), S62-S69 (2011).   DOI
34 Blanco-Rojo R. et al. The insulin resistance phenotype (muscle or liver) interacts with the type of diet to determine changes in disposition index after 2 years of intervention: the CORDIOPREV-DIAB randomised clinical trial. Diabetologia https://doi.org/10.1007/s00125-015-3776-4 (2015).   DOI
35 Al-Kafaji, G. et al. Peripheral blood microRNA-15a is a potential biomarker for type 2 diabetes mellitus and pre-diabetes. Mol. Med. Rep. 12, 7485-7490 (2015).   DOI
36 Bucolo, G. & David, H. Quantitative determination of serum triglycerides by the use of enzymes. Clin. Chem. 19, 476-482 (1973).
37 El Ouaamari, A. et al. miR-375 targets 3’-phosphoinositide-dependent protein kinase-1 and regulates glucose-induced biological responses in pancreatic beta-cells. Diabetes 57, 2708-2717 (2008).   DOI
38 Nathan, D. M. et al. Impaired fasting glucose and impaired glucose tolerance: implications for care. Diabetes Care 30, 753-759 (2007).   DOI
39 Lauritzen, T., Sandbaek, A., Skriver, M. V. & Borch-Johnsen, K. HbA1c and cardiovascular risk score identify people who may benefit from preventive interventions: a 7 year follow-up of a high-risk screening programme for diabetes in primary care (ADDITION), Denmark. Diabetologia 54, 1318-1326 (2011).   DOI
40 Allain, C. C., Poon, L. S., Chan, C. S., Richmond, W. & Fu, P. C. Enzymatic determination of total serum cholesterol. Clin. Chem. 20, 470-475 (1974).
41 Briggs, C. J., Anderson, D., Johnson, P. & Deegan, T. Evaluation of the polyethylene glycol precipitation method for the estimation of high-density lipoprotein cholesterol. Ann. Clin. Biochem. 18, 177-181 (1981).   DOI
42 Matsuda, M. & DeFronzo, R. A. Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care 22, 1462-1470 (1999).   DOI
43 Song, Y. et al. Insulin sensitivity and insulin secretion determined by homeostasis model assessment and risk of diabetes in a multiethnic cohort of women: the Women’s Health Initiative Observational Study. Diabetes Care 30, 1747-1752 (2007).   DOI
44 Xia, H. Q., Pan, Y., Peng, J. & Lu, G. X. Over-expression of miR375 reduces glucose-induced insulin secretion in Nit-1 cells. Mol. Biol. Rep. 38, 3061-3065 (2011).   DOI
45 Hanson, R. L. et al. Evaluation of simple indices of insulin sensitivity and insulin secretion for use in epidemiologic studies. Am. J. Epidemiol. 151, 190-198 (2000).   DOI
46 Tang, W. et al. The association between serum uric acid and residual beta -cell function in type 2 diabetes. J. Diabetes Res. 2014, 709691 (2014).
47 Plaisance, V., Waeber, G., Regazzi, R. & Abderrahmani, A. Role of microRNAs in islet beta-cell compensation and failure during diabetes. J. Diabetes Res. 2014, 1-12 (2014).
48 Poy, M. N. et al. miR-375 maintains normal pancreatic alpha- and beta-cell mass. Proc. Natl Acad. Sci. USA 106, 5813-5818 (2009).   DOI
49 Sun, L. L. et al. MicroRNA-15a positively regulates insulin synthesis by inhibiting uncoupling protein-2 expression. Diabetes Res. Clin. Pract. 91, 94-100 (2011).   DOI
50 Ying, W. et al. miR-150 regulates obesity-associated insulin resistance by controlling B cell functions. Sci. Rep. 6, 20176 (2016).   DOI
51 Andersen, C. L., Jensen, J. L. & Orntoft, T. F. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 64, 5245-5250 (2004).   DOI