Browse > Article
http://dx.doi.org/10.1038/s12276-018-0161-7

Estrogen promotes the onset and development of idiopathic scoliosis via disproportionate endochondral ossification of the anterior and posterior column in a bipedal rat model  

Zheng, Shuhui (Research Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University)
Zhou, Hang (Department of Orthopedics, The First Affiliated Hospital of Sun Yat-sen University)
Gao, Bo (Department of Orthopaedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University)
Li, Yongyong (Research Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University)
Liao, Zhiheng (Department of Orthopedics, The First Affiliated Hospital of Sun Yat-sen University)
Zhou, Taifeng (Department of Orthopedics, The First Affiliated Hospital of Sun Yat-sen University)
Lian, Chengjie (Department of Orthopedics, The First Affiliated Hospital of Sun Yat-sen University)
Wu, Zizhao (Department of Orthopaedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University)
Su, Deying (Department of Orthopedics, The First Affiliated Hospital of Sun Yat-sen University)
Wang, Tingting (Department of Orthopedics, The First Affiliated Hospital of Sun Yat-sen University)
Su, Peiqiang (Department of Orthopedics, The First Affiliated Hospital of Sun Yat-sen University)
Xu, Caixia (Research Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University)
Publication Information
Experimental and Molecular Medicine / v.50, no.11, 2018 , pp. 3.1-3.11 More about this Journal
Abstract
This study aimed to verify the effects of estrogen on the onset and development of adolescent idiopathic scoliosis and the mechanisms associated with these effects by constructing a pubescent bipedal rat model. Experiments were conducted to investigate whether scoliosis progression was prevented by a Triptorelin treatment. One hundred twenty bipedal rats were divided into female, OVX (ovariectomy), OVX + E2, Triptorelin, sham, and male groups. According to a spinal radiographic analysis, the scoliosis rates and curve severity of the female and OVX + E2 groups were higher than those in the OVX, Triptorelin, and male groups. The measurements obtained from the sagittal plane of thoracic vertebrae CT confirmed a relatively slower growth of the anterior elements and a faster growth of the posterior elements between T11 and T13 in the female and OVX + E2 groups than in the OVX and Triptorelin groups. Histomorphometry and immunohistochemistry revealed a significantly longer hypertrophic zone of the vertebral cartilage growth plates that expressed more type X collagen and less type II collagen in the OVX and Triptorelin groups than in the female and OVX + E2 groups. Ki67 immunostaining confirmed an increase in the proliferation of vertebral growth plate chondrocytes in the OVX group compared with the female and OVX + E2 groups. In conclusion, estrogen obviously increased the incidence of scoliosis and curve severity in pubescent bipedal rats. The underlying mechanism may be a loss of coupling of the endochondral ossification between the anterior and posterior columns. Triptorelin decreased the incidence of scoliosis and curve magnitudes in bipedal female rats.
Keywords
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kindsfater, K., Lowe, T., Lawellin, D., Weinstein, D. & Akmakjian, J. Levels of platelet calmodulin for the prediction of progression and severity of adolescent idiopathic scoliosis. J. Bone Jt. Surg. 76, 1186-1192 (1994).   DOI
2 Letellier, K. et al. Estrogen cross-talk with the melatonin signaling pathway in human osteoblasts derived from adolescent idiopathic scoliosis patients. J. Pineal Res. 45, 383-393 (2008).   DOI
3 Leboeuf, D., Letellier, K., Alos, N., Edery, P. & Moldovan, F. Do estrogens impact adolescent idiopathic scoliosis? Trends Endocrinol. Metab. 20, 147-152 (2009).   DOI
4 Iwamuro, S. et al. Teratogenic and anti-metamorphic effects of bisphenol A on embryonic and larval Xenopus laevis. Gen. Comp. Endocrinol. 133, 189-198 (2003).   DOI
5 Kulis, A. et al. Participation of sex hormones in multifactorial pathogenesis of adolescent idiopathic scoliosis. Int. Orthop. 39, 1227-1236 (2015).   DOI
6 Man, G. C. et al. A review of pinealectomy-induced melatonin-deficient animal models for the study of etiopathogenesis of adolescent idiopathic scoliosis. Int. J. Mol. Sci. 15, 16484-16499 (2014).   DOI
7 Wu, T. et al. Role of enhanced central leptin activity in a Scoliosis model created in bipedal amputated mice. Spine (Phila. Pa 1976) 40, E1041-E1045 (2015).   DOI
8 Dede, O., Akel, I., Demirkiran, G., Yalcin, N., Marcucio, R. & Acaroglu, E. Is decreased bone mineral density associated with development of scoliosis? A bipedal osteopenic rat model. Scoliosis 6, 24 (2011).   DOI
9 Guo, X., Chau, W. W., Chan, Y. L. & Cheng, J. C. Relative anterior spinal overgrowth in adolescent idiopathic scoliosis. Results of disproportionate endochondral-membranous bone growth. J. Bone Jt. Surg. Br. 85, 1026-1031 (2003).
10 Xiong, B., Sevastik, B., Willers, U., Sevastick, J. & Hedlund, R. Structural vertebral changes in the horizontal plane in idiopathic scoliosis and the long-term corrective effect of spine instrumentation. Eur. Spine J. 4, 11-14 (1995).   DOI
11 Haas, S. L. Growth in length of the vertebrae. Arch. Surg. Chic. 38, 245-249 (1939).   DOI
12 Leone Roberti Maggiore, U. et al. Triptorelin for the treatment of endometriosis. Expert Opin. Pharmacother. 15, 1153-1179 (2014).   DOI
13 Boudreau, M. et al. Utility of morphological abnormalities during early-life development of the estuarine mummichog, Fundulus heteroclitus, as an indicator of estrogenic and anti estrogenic endocrine disruption. Environ. Toxicol. Chem. 23, 415-425 (2004).   DOI
14 Sanders, J. O., Browne, R. H., McConnell, S. J., Margraf, S. A., Cooney, T. E. & Finegold, D. N. Maturity assessment and curve progression in girls with idiopathic scoliosis. J. Bone Jt. Surg. Am. 89, 64-73 (2007).   DOI
15 Raczkowski, J. W. The concentrations of testosterone and estradiol in girls with adolescent idiopathic scoliosis. Neuroendocrinol. Lett. 28, 302-304 (2007).
16 Demirkiran, G., Dede, O., Yalcin, N., Akel, I., Marcucio, R. & Acaroglu, E. Selective estrogen receptor modulation prevents scoliotic curve progression: radiologic and histomorphometric study on a bipedal C57Bl6 mice model. Eur. Spine J. 23, 455-462 (2014).   DOI
17 Kronenberg, H. M. Developmental regulation of the growth plate. Nature 423, 332-336 (2003).   DOI
18 Nilsson, O., Marino, R., De Luca, F., Phillip, M. & Baron, J. Endocrine regulation of the growth plate. Horm. Res. 64, 157-165 (2005).
19 Farnum, Cornelia, E., Wilsman & Norman, J. Converting a differentiation cascade into longitudinal growth: stereology and analysis of transgenic animals as tools for understanding growth plate function. Curr. Opin. Orthop. 12, 428-433 (2001).   DOI
20 Zhang, H. et al. Intramembranous ossification and endochondral ossification are impaired differently between glucocorticoid-induced osteoporosis and estrogen deficiency-induced osteoporosis. Sci. Rep. 8, 3867 (2018).   DOI
21 Illien-Junger, S., Torre, O. M., Kindschuh, W. F., Chen, X., Laudier, D. M. & Iatridis, J. C. AGEs induce ectopic endochondral ossification in intervertebral discs. Eur. Cell. Mater. 32, 257-270 (2016).   DOI
22 Borjesson, A. E. et al. The role o-f estrogen receptor ${\alpha}$ in growth plate cartilage for longitudinal bone growth. J. Bone Miner. Res. 25, 2690-2700 (2010).   DOI
23 Zhu, F., Qiu, Y., Yeung, H. Y., Lee, K. M. & Cheng, J. C. Histomorphometric study of the spinal growth plates in idiopathic scoliosis and congenital scoliosis. Pediatr. Int. 48, 591-598 (2006).   DOI
24 Pedrini, V. A., Ponset, I. V. & Dohrman, S. C. Glycosaminoglycans of intervertebral disc in idiopathic scoliosis. J. Lab. Clin. Med. 82, 938-950 (1973).
25 Ahn, U. M. et al. The etiology of adolescent idiopathic scoliosis. Am. J. Orthop. 31, 387-395 (2002).
26 Lowe, T. G., Edgar, M., Margulies, J. Y., Miller, N. H., Raso, V. J. & Reinker, K. A. Etiology of idiopathic scoliosis: current trends in research. J. Bone Jt. Surg. Am. 82-A, 1157-1168 (2000).
27 Akel, I., Demirkiran, G., Alanay, A., Karahan, S., Marcucio, R. & Acaroglu, E. The effect of calmodulin antagonists on scoliosis: bipedal C57BL/6 mice model. Eur. Spine J. 18, 499-505 (2009).   DOI
28 Cowell, H. R., Hall, J. N. & MacEwen, G. D. Genetic aspects of idiopathic scoliosis. Clin. Orthop. Relat. Res. 86, 121-131 (1972).   DOI
29 Fischer, R. L. & DeGeorge, F. V. Idiopathic scoliosis: an investigation of genetic and environmental factors. J. Bone Jt. Surg. 49, 1005-1006 (1976).
30 Kazmin, A. I. & Merkorieva, R. V. Role of disturbance of glucosaminoglycaine metabolism in the pathogenesis of scoliosis. Ortop. Travmatol. Protez. 32, 87-91 (1971).
31 Dickson, R. A., Lawton, J. O., Archer, I. A. & Butt, W. P. The pathogenesis of idiopathic scoliosis: biplanar spinal asymmetry. J. Bone Jt. Surg. Br. 66, 8-15 (1984).
32 Schultz, A. B. A biomechanical view of scoliosis. Spine 1, 162-171 (1976).   DOI
33 Bararack, R. L., Wyatt, M. P., Whitecloud, T. S., Burk, S. W., Robert, J. W. & Brinker, M. R. Vibratory hypersensitivity in idiopathic scoliosis. J. Pediatr. Orthop. 8, 389-395 (1988).   DOI
34 Chuma, A., Kitahara, H., Minami, S., Goto, S., Takaso, M. & Moriya, H. Structural scoliosis model in dogs with experimentally induced syringomyelia. Spine 22, 589-594 (1997).   DOI