Browse > Article
http://dx.doi.org/10.15188/kjopp.2015.08.29.4.305

Computer Simulation Study of the Potential Anti-arrhythmic Properties of Paeonol  

Lee, Soojin (Department of Physiology, College of Korean Medicine, Sangji University)
Publication Information
Journal of Physiology & Pathology in Korean Medicine / v.29, no.4, 2015 , pp. 305-312 More about this Journal
Abstract
Paeonol is a major component found in the Paeoniaceae family such as Paeonia suffruticosa Andrews. Paeonia suffruticosa Andrews has traditionally been used to enhance blood flow and relieve joint pain in east Asian countries including China, Korea and Japan. Current research has shown that paeonol blocked the voltage-gated sodium channel and L-type calcium channel. However, there is a lack of research to reveal the relation between cardiac function and blockade of ion channels by paeonol. Therefore, the aim of this study is to investigate whether paeonol has anti-arrhythmic effects via modulating cardiac ion channels. It is collected that the effects of paeonol on multiple ion channels such as the fast sodium channel and L-type calcium channel from published papers. To incorporate the information on multi-channel block, we computed the effects using the mathematical cardiac model of the guinea-pig and rat ventricular cells (Noble 1998 and 1991 model) and induced early after-depolarizations (EADs) to generate an arrhythmia in the whole heart. Paeonol slightly shortened the action potential duration in the normal cardiac ventricular action potential by the inhibition of sodium channel and L-type calcium channel. Paeonol presented the protective effect from EADs by the inactivation of sodium channel but not L-type calcium channel. Paeonol did not show any changes when it treated on normal ventricular cells through the inhibition of sodium channel, but the protective effect of paeonol through sodium channel on EADs was dose-dependent. These findings suggest that paeonol and its original plant may possess anti-arrhythmic activity, which implies their cardioprotective effects.
Keywords
Systems biology; Computational modelling; Anti-arrhythmia; Cardiac ion channel; Paeonol;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Belardinelli, L., Shryock, J.C., Fraser, H. Inhibitionof the Late Sodium Current as a Potential Cardioprotective Principle: Effects of the Late Sodium Current Inhibitor Ranolazine. Heart 92: iv6-iv14, 2006.   DOI
2 Asakura, K., Cha, C.Y., Yamaoka, H., Horikawa, Y., Memida, H., Powell, T., Amano, A., Noma, A. EAD and DAD Mechanisms Analyzed by Developing a New Human Ventricular Cell Model. Prog Biophysic Mol Biol. 116: 11-24, 2014.   DOI
3 Christophe, B. Simulation of Early After-Depolarisation in Non-Failing Human Ventricular Myocytes: Can This Help Cardiac Safety Pharmacology? Pharmacol Rep 65: 1281-1293, 2013.   DOI
4 Xie, Y., Grandi, E., Puglisi, J.L., Sato, D., Bers, D.M. Beta-Adrenergic Stimulation Activates Early Afterdepolarizations Transiently via Kinetic Mismatch of PKA Targets. J Mol Cell Cardiol 58: 153-161, 2013.   DOI
5 Chen, S., Li, S. The Na+/Ca2+ Exchanger in Cardiac Ischemial/Reperfusion Injury. Med Sci Monit 18:RA161-RA165, 2012.
6 Mirams, G.R., Cui, Y., Sher, A., Fink, M., Cooper, J., Heath, B.M., McMahon, N.C., Gavaghan, D.J., Noble, D. Simulation of Multiple Ion Channel Block Provides Improved Early Prediction of Compounds’ Clinical Torsadogenic Risk. Cariovasc Res 91: 53-61, 2011.   DOI
7 Wang, R.R., Li, N., Zhang, Y.H., Ran, Y.Q., Pu, J.L. The Effects of Paeoniflorin Monomer of a Chinese Herb on Cardiac Ion Channels. Chin Med J 124: 3105-3111, 2011.
8 Whalley, D.W., Wendt, D.J., Grant, A.O. Basic Concepts in Cellular CardiacEelectrophysiology: Part II: Block of Ion Channels by Antiarrhythmic Drugs. Pacing Clin Electrophysiol 18: 1686-1704, 1995.   DOI
9 Kim, M.S. The Effects of Moutau in Streptozotocin-Induced Diabetic Nephropathy Rats. Doctors dissertation. Dongshin University. 2013.
10 Park, S., Jun, D.W., Park, C.H., Jang, J.S., Park, S.K., Ku, B.S., Kim, B.J., Choi, S.B. Hypoglycemic Effects of Crude Extracts of Moutan Radicis Cortex. Kor J Food Sci Technol 36: 472-477, 2004.
11 Lee, Y.S., Shin, W.S., Cho, S.Y., Ze, K.R., Lee, H.M., Jeong, C.S. Effects of Sterilization for Quality Control on the Content of Paeonol in Moutan Radicies Bark. J Pharm Soc Kor 49: 180-184, 2005.
12 Lei, M., Kohl, P., Brown, H., Noble, D. Non-Muscarinic and Non-Nicotinic Inhibition by the Acetylcholine Analogue Carbachol of the Delayed Rectifier Potassium Current, IK, in Rabbit Isolated Sino-Atrial Node Cells. Exp Physiol 84: 631-638, 1999.
13 Burashnikov, A., Antzelevitch, C. Reinduction of Atrial Fibrillation Immediately after Termination of the Arrhythmia is Mediated by Late Phase 3 Early Afterdepolarization-Induced Triggered Activity. Circulation 107: 2355-2360, 2003.   DOI
14 Hsieh, C.L., Cheng, C.Y., Tsai, T.H., Lin, I.H., Liu, C.H., Chiang, S.Y., Lin, J.G., Lao, C.J., Tang, N.Y. Paeonol Reduced Cerebral Infarction Involving the Superoxide Anion and Microglia Activation in Ischemia-Reperfusion Injured Rats. J Ethnopharmacol 106: 208-215, 2006.   DOI
15 Nizamutdinova, I.T., Jin, Y.C., Kim, J.S., Yean, M.H., Kang, S.S., Kim, Y.S., Lee, J.H., Seo, H.G., Kim, H.J., Chang, K.C. Paeonol and Paeoniflorin, the Main Active Principles of Paeonia Albiflora, Protect the Heart from Myocardial Ischemia/Reperfusion Injury in Rats. Planta Med 74: 14-18, 2008.   DOI
16 Suzuki, K., Matsumoto, A., Nishida, H., Reien, Y., Maruyama, H., Nakaya, H. Termination of Aconitine-Induced Atrial Fibrillation by the KACh-Channel Blocker Tertiapin: Underlying Electrophysiological Mechanism. J Pharmacol Sci 125: 406-414, 2014.   DOI
17 Clarkson, C.W., Follmer, C.H., Ten Eick, R.E., Hondeghem, L.M., Yeh, J.Z. Evidence for Two Components of Sodium Channel Block by Lidocaine in Isolated Cardiac mMocytes. Circ Res 63: 869-878, 1998.   DOI
18 Amanfu, R.K., Saucerman, J.J. Cardiac Models in Drug Discovery and Development: a Review. Clit Rev Biomed Eng. 39: 379-395, 2011.   DOI
19 Ma, Y., Bates, S., Gurney, A.M. The Effects of Paeonol on the Electrophysiological Properties of Cardiac Ventricular Myocytes. Eur J Pharmacol 545: 87-92, 2006.   DOI
20 Zhang, G.Q., Hao, X.M., Zhou, P.A., Wu, C.H. Effect of Paeonol on L-Type Calcium Channel in Rat Ventricular Myocytes. Medhocs Find Exp Clin Pharmacol 25: 281-285, 2003.   DOI
21 Noble, D., Varghese, A., Kohl, P., Noble, P. Improved Guinea-pig Ventricular Cell Model Incorporating a Diadic Space, IKr and IKs, and Length- and Tension-Dependent Processes. Can J Cardiol 14: 123-134, 1998.
22 Noble, D., Noble, P.J. Late Sodium Current in the Pathophysiology of Cardiovascular Disease: Consequences of Socium-Calcium Overload. Heart 92: iv1-iv5, 2006.   DOI
23 Fenner, J.W., Brook, B., Clapworthy, G., Coveney, P.V., Feipel, V., Gregersen, H., Hose, D.R., Kohl, P., Lawford, P., McCormack, K.M., Pinney, D., Thomas, S.R., Van Sint Jan, S., Waters, S., Viceconti, M. The EuroPhysiome, STEP and a Roadmap for the Virtual Physiological Human. Philos Transact A Math Phys Eng Sci 366: 2979-2999, 2008.   DOI
24 Noble, D. Noble, S.J., Belt, G.C.G., Earm, Y.E., Ho, W.K., So, I.K. The Role of Sodium-Calcium Exchange during the Cardiac Action Potential. Ann N Y Acad Sci 639: 334-353, 1991.   DOI
25 Cellular Open Resource [online]. Available from URL:http://COR.physiol.ox.ac.uk
26 Garny, A., Kohl, P., Noble, D. Cellular Open Resource (COR): A Public CellML Based Environment for Modeling Biological Function. Int J Bifurcat Chaos 13: 3579-3590, 2003.   DOI
27 Leem, C.H. The Global Trend of Physiome Research. J KSME 49: 39-45, 2009.
28 Noble, D. A Modification of the Hodgkin-Huxley Equations Applicable to Purkinje Fibre aAction and Pace-maker Potentials. J Physiol 160: 317-352, 1692.   DOI
29 CellML [online]. Available from: URL:https://models.physiomeproject.org/cellml
30 Lloyd, C.M., Halstead, M.D.B., Nielsen, P.F. CellML: Its Future, Present and past. Prog Biophys Mol Biol 85: 433-450, 2004.   DOI
31 Health Insurance Review and Assessment Service. Health Insurance Statistics Annual Reports 2012, 2013, 2014. [online] [cited 2015 Jun 10]. Available from URL: https://www.hira.or.kr/dummy.do?pgmid=HIRAA020045010000.
32 On, Y.K. Catheter Ablation for Tachycardia-Bradycardia Syndrome. J Card Arrhythmia 11(3): 23-28, 2010.
33 Beard, D.A., Britten, R., Cooling, M.T., Garny, A., Halstead, M.D., Hunter, P.J., Lawson, J., Lloyd, C.M., Marsh, J., Miller, A., Nickerson, D.P., Nielsen, P.M., Nomura, T., Subramanium, S., Wimalaratne, S.M., Yu, T. CellML Metadata Standards, Associated tools and repositories. Philos Trans A Math Phys Eng Sci 367: 1845-1867, 2009.   DOI
34 Zimik, S., Vandersickel, N., Nayak, A.R., Panfilov, A.V., Pandit, R. A Comparative Study of Early Afterdepolari-zation-Mediated Fibrillation in Two Mathematical Models for Human Ventricular Cells. PLoS One 10: e9130632, 2015.   DOI
35 Okin, P.M., Bang, C.N., Wachtell, K., Hille, D.A., Kjeldsen, S.E., Dahlöf, B., Devereux, R.B. Relationship of Sudden Cardiac Death to New-Onset Atrial Fibrillation in Hypertensive pPatients with Left Nentricular Hypertrophy. Circ Arrhythm Electrophysiol 6: 243-251, 2013.   DOI
36 Lee, M.Y. Sudden Cardiac Death and Prevention. J Card Arrhythmia 11(2): 17-23, 2010.
37 Lee, J.E., Ham, H.U., Lee, K.Y., Roh, J.W., Yu, J.S., Chung, W.B. Early Repolarization Syndrome with Idiopathic Ventricular Fibrillation. Ewha Med J 37: 112-115, 2014.   DOI
38 Hunter, P., Coveney, P.V., de Bono, B., Diaz, V., Fenner, J., Frangi, A.F., Harris, P., Hose, R., Kohl, P., Lawford, P., McCormack, K., Mendes, M., Omholt, S., Quarteroni, A., Skar, J., Tegner, J., Randall Thomas, S., Tollis, I., Tsamardinos, I., van Beek, J.H., Viceconti, M. A Vision and Strategy for the Virtual Physiological Human in 2010 and Beyond. Philos Transact A Math Phys Eng Sci 368: 2595-2614, 2010.   DOI
39 Bard, J., Melham, T., Werner, E., Noble, D. Plenary Discussion of the Conceptual Foundations of Systems Biology. Prog Biophys Mol Biol 111: 137-140, 2013.   DOI