Browse > Article

Effect of Phaseolus angularis Seed on Experimental Cellular Model of Nonalcoholic Fatty Liver Disease  

Jang, Yeong Suk (School of Korean Medicine, Korean Medicine Hospital, Pusan National University)
Seo, Ji Yun (School of Korean Medicine, Korean Medicine Hospital, Pusan National University)
Kwun, Min Jung (School of Korean Medicine, Korean Medicine Hospital, Pusan National University)
Kwon, Jung Nam (School of Korean Medicine, Korean Medicine Hospital, Pusan National University)
Lee, In (School of Korean Medicine, Korean Medicine Hospital, Pusan National University)
Hong, Jin Woo (School of Korean Medicine, Korean Medicine Hospital, Pusan National University)
Kim, So Yeon (School of Korean Medicine, Korean Medicine Hospital, Pusan National University)
Choi, Jun Yong (School of Korean Medicine, Korean Medicine Hospital, Pusan National University)
Park, Seong Ha (School of Korean Medicine, Korean Medicine Hospital, Pusan National University)
Joo, Myungsoo (School of Korean Medicine, Korean Medicine Hospital, Pusan National University)
Han, Chang Woo (School of Korean Medicine, Korean Medicine Hospital, Pusan National University)
Publication Information
Journal of Physiology & Pathology in Korean Medicine / v.27, no.6, 2013 , pp. 802-808 More about this Journal
Abstract
Here we tried to uncover the potential anti-lipogenic effect and the underlying mechanism of Phaseolus angularis seed in a cellular model of nonalcoholic fatty liver disease (NAFLD) induced in HepG2 cells. Ethanol extract of Phaseolus angularis seed (JSD) was prepared. HepG2 cells were incubated in palmitate containing media to induce intracellular lipid accumulation, and co-treated with JSD for 16 hrs before examine intracellular lipid content. In control group, the cells were not co-treated with JSD. We measured the effects of JSD on liver X receptor ${\alpha}$ ($LXR{\alpha}$) and sterol regulatory element-binding transcription factor-1c (SREBP-1c) expression, transcription level of lipogenic genes, including acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), stearoyl-CoA desaturase-1 (SCD-1), and AMP-activated protein kinase (AMPK) activation in HepG2 cells. JSD markedly reduced palmitate-induced intracellular lipid accumulation in HepG2 cells. JSD suppressed $LXR{\alpha}$/SREBP-1c expression, and SREBP-1c mediated induction of ACC, FAS, and SCD-1. Furthermore, JSD activated AMPK, which plays a major role in the control of hepatic lipid metabolism. Taken together, it is suggested that JSD has a potential to alleviate hepatic steatosis, at least in part, by suppressing $LXR{\alpha}$/SREBP-1c mediated induction of lipogenic genes. In addtion, the anti-lipogenic potential may be associated with activation of AMPK. Therefore, the Phaseolus angularis seed could be applied as a potential therapeutics for NAFLD with additional clinical studies.
Keywords
Phaseolus angularis; NAFLD; $LXR{\alpha}$; SREBP-1c; AMPK;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Pettinelli, P., Obregon, A.M., Videla, L.A. Molecular mechanisms of steatosis in nonalcoholic fatty liver disease. Nutr Hosp 26(3):441-450, 2011.
2 Repa, J.J., Liang, G., Ou, J., Bashmakov, Y., Lobaccaro, J.M., Shimomura, I., Shan, B., Brown, M.S., Goldstein, J.L., Mangelsdorf, D.J. Regulation of mouse sterol regulatory element-binding protein-1c gene (SREBP-1c) by oxysterol receptors, LXRalpha and LXRbeta. Genes Dev 14(22):2819-2830, 2000.   DOI   ScienceOn
3 Viollet, B., Foretz, M., Guigas, B., Horman, S., Dentin, R., Bertrand, L., Hue, L., Andreelli, F. Activation of AMP-activated protein kinase in the liver: a new strategy for the management of metabolic hepatic disorders. J Physiol 574(Pt1):41-53, 2006.   DOI   ScienceOn
4 Kohjima, M., Higuchi, N., Kato, M., Kotoh, K., Yoshimoto, T., Fujino, T., Yada, M., Yada, R., Harada, N., Enjoji, M., Takayanagi, R., Nakamuta, M. SREBP-1c, regulated by the insulin and AMPK signaling pathways, plays a role in nonalcoholic fatty liver disease. Int J Mol Med 21(4):507-511, 2008.
5 Zhang, Y., Breevoort, S.R., Angdisen, J., Fu, M., Schmidt, D.R., Holmstrom, S.R., Kliewer, S.A., Mangelsdorf, D.J., Schulman, I.G. Liver LXRalpha expression is crucial for whole body cholesterol homeostasis and reverse cholesterol transport in mice. J Clin Invest 122(5):1688-1699, 2012.   DOI   ScienceOn
6 Zhou, G., Myers, R., Li, Y., Chen, Y., Shen, X., Fenyk-Melody, J., Wu, M., Ventre, J., Doebber, T., Fujii, N., Musi, N., Hirshman, M.F., Goodyear, L.J., Moller, D.E. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 108(8):1167-1174, 2001.   DOI   ScienceOn
7 Masuoka, H.C., Chalasani, N. Nonalcoholic fatty liver disease: an emerging threat to obese and diabetic individuals. Ann N Y Acad Sci 1281: 106-122, 2013.   DOI   ScienceOn
8 Falck-Ytter, Y., Younossi, Z.M., Marchesini, G., McCullough, A.J. Clinical features and natural history of nonalcoholic steatosis syndromes. Semin Liver Dis 21(1):17-26, 2001.   DOI   ScienceOn
9 Daniel, S., Ben-Menachem, T., Vasudevan, G., Ma, C.K., Blumenkehl, M. Prospective evaluation of unexplained chronic liver transaminase abnormalities in asymptomatic and symptomatic patients. Am J Gastroenterol 94(10):3010-3014, 1999.   DOI   ScienceOn
10 Bugianesi, E., Leone, N., Vanni, E., Marchesini, G., Brunello, F., Carucci, P., Musso, A., De Paolis, P., Capussotti, L., Salizzoni, M., Rizzetto, M. Expanding the natural history of nonalcoholic steatohepatitis: from cryptogenic cirrhosis to hepatocellular carcinoma. Gastroenterology 123(1):134-140, 2002.   DOI   ScienceOn
11 Ibrahim, M.A., Kelleni, M., Geddawy, A. Nonalcoholic fatty liver disease: current and potential therapies. Life Sci 92(2):114-118, 2013.   DOI   ScienceOn
12 Wu, J.N. An illustrated Chinese materia medica. New York, N.Y., Oxford University Press. p 474, 2005.
13 허준. 동의보감. 서울, 법인문화사, p 745, 1999.
14 Clarke, P.R., Hardie, D.G. Regulation of HMG-CoA reductase: identification of the site phosphorylated by the AMP-activated protein kinase in vitro and in intact rat liver. EMBO J 9(8):2439-2446, 1990.
15 Lin, H.Z., Yang, S.Q., Chuckaree, C., Kuhajda, F., Ronnet, G., Diehl, A.M. Metformin reverses fatty liver disease in obese, leptin-deficient mice. Nat Med 6(9):998-1003, 2000.   DOI   ScienceOn
16 Shi, K.Q., Fan, Y.C., Liu, W.Y., Li, L.F., Chen, Y.P., Zheng, M.H. Traditional Chinese medicines benefit to nonalcoholic fatty liver disease: a systematic review and meta-analysis. Mol Biol Rep 39(10):9715-9722, 2012.   DOI
17 Muoio, D.M., Seefeld, K., Witters, L.A., Coleman, R.A. AMP-activated kinase reciprocally regulates triacylglycerol synthesis and fatty acid oxidation in liver and muscle: evidence that sn-glycerol-3-phosphate acyltransferase is a novel target. Biochem J 338(Pt3):783-791, 1999.   DOI   ScienceOn
18 Yu, T., Ahn, H.M., Shen, T., Yoon, K., Jang, H.J., Lee, Y.J., Yang, H.M., Kim, J.H., Kim, C., Han, M.H., Cha, S.H., Kim, T.W., Kim, S.Y., Lee, J., Cho, J.Y. Anti-inflammatory activity of ethanol extract derived from Phaseolus angularis beans. J Ethnopharmacol 137(3):1197-1206, 2011.   DOI   ScienceOn
19 Nakaya, K., Nabata, Y., Ichiyanagi, T., An, W.W. Stimulation of dendritic cell maturation and induction of apoptosis in leukemia cells by a heat-stable extract from azuki bean (Vigna angularis), a promising immunopotentiating food and dietary supplement for cancer prevention. Asian Pac J Cancer Prev 13(2):607-611, 2012.   DOI   ScienceOn
20 Hori, Y., Sato, S., Hatai, A. Antibacterial activity of plant extracts from azuki beans (Vigna angularis) in vitro. Phytother Res 20(2):162-164, 2006.   DOI   ScienceOn
21 Itoh, T., Kobayashi, M., Horio, F., Furuichi, Y. Hypoglycemic effect of hot-water extract of adzuki (Vigna angularis) in spontaneously diabetic KK-A(y) mice. Nutrition 25(2):134-141, 2009.   DOI   ScienceOn
22 Mukai, Y., Sato, S. Polyphenol-containing azuki bean (Vigna angularis) extract attenuates blood pressure elevation and modulates nitric oxide synthase and caveolin-1 expressions in rats with hypertension. Nutr Metab Cardiovasc Dis 19(7):491-497, 2009.   DOI   ScienceOn
23 Ha, S.K., Kim, J., Chae, C. Role of AMP-activated protein kinase and adiponectin during development of hepatic steatosis in high-fat diet-induced obesity in rats. J Comp Pathol 145(1):88-94, 2011.   DOI   ScienceOn
24 Laffitte, B.A., Chao, L.C., Li, J., Walczak, R., Hummasti, S., Joseph, S.B., Castrillo, A., Wilpitz, D.C., Mangelsdorf, D.J., Collins, J.L., Saez, E., Tontonoz, P. Activation of liver X receptor improves glucose tolerance through coordinate regulation of glucose metabolism in liver and adipose tissue. Proc Natl Acad Sci U S A. 100(9):5419-5424, 2003.   DOI   ScienceOn
25 Lee, E.K., Park, Y.J. Metabolic regulation of nuclear receptors. EnM 23(3):155-164, 2008.
26 Long, Y.C., Zierath, J.R. AMP-activated protein kinase signaling in metabolic regulation. J Clin Invest 116(7):1776-1783, 2006.   DOI   ScienceOn
27 Cao, J., Dai, D.L., Yao, L., Yu, H.H., Ning, B., Zhang, Q., Chen, J., Cheng, W.H., Shen, W., Yang, Z.X. Saturated fatty acid induction of endoplasmic reticulum stress and apoptosis in human liver cells via the PERK/ATF4/CHOP signaling pathway. Mol Cell Biochem 364(1-2):115-129, 2012.   DOI
28 Itoh, T., Furuichi, Y. Lowering serum cholesterol level by feeding a 40% ethanol-eluted fraction from HP-20 resin treated with hot water extract of adzuki beans (Vigna angularis) to rats fed a high-fat cholesterol diet. Nutrition 25(3):318-321, 2009.   DOI   ScienceOn
29 Liu, J., Li, Y.M., Chen, S.H., Li, W.P. An in vitro hepatic steatosis cell model for study of non-alcoholic fatty liver disease. Zhejiang Da Xue Xue Bao Yi Xue Ban 38(6):626-629, 2009.
30 Kim, D.S., Jeong, S.K., Kim, H.R., Kim, D.S., Chae, S.W., Chae, H.J. Metformin regulates palmitate-induced apoptosis and ER stress response in HepG2 liver cells. Immunopharmacol Immunotoxicol 32(2):251-257, 2010.   DOI   ScienceOn
31 Browning, J.D., Horton, J.D. Molecular mediators of hepatic steatosis and liver injury. J Clin Invest 114(2):147-152, 2004.   DOI
32 Foretz, M., Ancellin, N., Andreelli, F., Saintillan, Y., Grondin, P., Kahn, A., Thorens, B., Vaulont, S., Viollet, B. Short-term overexpression of a constitutively active form of AMP-activated protein kinase in the liver leads to mild hypoglycemia and fatty liver. Diabetes 54(5):1331-1339, 2005.   DOI   ScienceOn
33 Kawaguchi, T., Osatomi, K., Yamashita, H., Kabashima, T., Uyeda, K. Mechanism for fatty acid "sparing" effect on glucose-induced transcription: regulation of carbohydrate-responsive element-binding protein by AMP-activated protein kinase. J Biol Chem 277(6):3829-3835, 2002.   DOI   ScienceOn
34 Munday, M.R., Campbell, D.G., Carling, D., Hardie, D.G. Identification by amino acid sequencing of three major regulatory phosphorylation sites on rat acetyl-CoA carboxylase. Eur J Biochem 175(2):331-338, 1988.   DOI   ScienceOn
35 Chuthan Sourianarayanane A, Pagadala MR, Kirwan JP. Management of non-alcoholic fatty liver disease. Minerva Gastroenterol Dietol 59(1):69-87, 2013.
36 Yao, Y., Cheng, X., Wang, S., Wang, L., Ren, G. Influence of altitudinal variation on the antioxidant and antidiabetic potential of azuki bean (Vigna angularis). Int J Food Sci Nutr 63(1):117-124, 2012.   DOI   ScienceOn