Browse > Article

Nrf-2 Mediated Antioxidative Effect of Korean and Chinese Safflower Seeds  

Shin, Hyun Jong (Department of Pathology, College of Korean Medicine, Woosuk University)
Jin, Jae Ho (Department of Pathology, College of Korean Medicine, Woosuk University)
Lee, Kwang Gyu (Department of Pathology, College of Korean Medicine, Woosuk University)
Lee, Chang Hyun (Department of Anatomy, College of Korean Medicine, Woosuk University)
Lee, Sang Ryong (Department of Meridian & Acupoint, College of Korean Medicine, Woosuk University)
Ha, Ki Tae (Division of Applied Medicine, School of Korean Medicine, Pusan National University)
Joo, Myungsoo (Division of Applied Medicine, School of Korean Medicine, Pusan National University)
Jeong, Han Sol (Division of Applied Medicine, School of Korean Medicine, Pusan National University)
Publication Information
Journal of Physiology & Pathology in Korean Medicine / v.27, no.6, 2013 , pp. 745-751 More about this Journal
Abstract
Safflower (Carthamus tinctorius L.) seeds have been used in Korea and China for promoting bone formation and protection. This study was designed to examine the Nrf-2 mediated anti-oxidative effects of Korean and Chinese safflower seeds. Water and ethanol extracts of safflower seeds were treated to RAW 264.7 cells. Nrf-2 transcriptional activity was measured by reporter gene assay and western blot analysis. Semi-quantitive RT-PCR analysis was adopted to measure Nrf-2 dependent gene expressions. Water extracts of safflower seeds have strongly induced the activation of Nrf-2 transcription than ethanol extracts. Especially, water extracts of Korean safflower seeds has more strongly increased the expression of nuclear Nrf-2. Water extracts of Korea and China safflower seeds have also increased the expression of Nrf-2-dependent genes such as GCLC, NQO-1 and HO-1 in RAW 264.7 cells. However, all kinds of safflower seeds extracts did not increase intracellular ROS production. These results demonstrate that the antioxidant effects of safflower seeds are not related with ROS production, rather it is mediated by the direct activation of Nrf-2.
Keywords
Nrf-2; Anti-oxidant response element; Safflower seeds; Reactive oxygen species;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Dhakshinamoorthy, S., Long, D.J. 2nd. Jaiswal, A.K. Antioxidant regulation of genes encoding enzymes that detoxify xenobiotics and carcinogens. Curr Top Cell Regul 36: 201-216, 2000.
2 Nioi, P., McMahon, M., Itoh, K., Yamamoto, M., Hayes, J.D. Identification of a novel Nrf2-regulated antioxidant response element (ARE) in the mouse NAD(P)H: quinone oxidoreductase 1 gene: reassessment of the ARE consensus sequence. Biochem J 374: 337-348, 2003.   DOI   ScienceOn
3 Maines, M.D. Heme oxygenase: function, multiplicity, regulatory mechanism, and clinical applications. FASEB J 2:2557-2568, 1988.   DOI
4 Okinaga, S., Takahashi, .K, Takeda, K., Yoshizawa, M., Fujita, H., Sasaki, H., Shibahara, S. Regulation of human heme oxygenase-1 gene expression under thermal stress. Blood 87: 5074-5084, 1996.
5 Willis, D., Moore, A.R., Frederick, R., Willoughby, D.A. Heme oxygenase: a novel target for the modulation of the inflammatory response. Nat Med 2: 87-90, 1996.   DOI   ScienceOn
6 Bauer, M., Bauer, I. Heme oxygenase-1: redox regulation and role in the hepatic response to oxidative stress. Antioxid Redox Signal 4(5):749-758, 2002.   DOI   ScienceOn
7 Ryter, S.W, Choi, A.M. Heme oxygenase-1: molecular mechanisms of gene expression in oxygen-related stress. Antioxid Redox Signal 4(4):625-632, 2002.   DOI   ScienceOn
8 Martin, D., Rojo, A.I, Salinas, M., Diaz, R., Gallardo, G., Alam, J., De Galarreta, C.M., Cuadrado, A. Regulation of heme oxygenase-1 expression through the phosphatidylinositol 3-kinase/Akt pathway and the Nrf2 transcription factor in response to the antioxidant phytochemical carnosol. J Biol Chem 279(10):8919-8929, 2004.   DOI   ScienceOn
9 He, C.H., Gong, P., Hu, B., Stewart, D., Choi, M.E, Choi, A.M., Alam, J. Identification of activating transcription factor 4 (ATF4) as an Nrf2-interacting protein - Implication for heme oxygenase-1 gene regulation. J Biol Chem 276(24):20858-20865, 2001.   DOI   ScienceOn
10 Alam, J., Wicks, C., Stewart, D., Gong, P., Touchard, C., Otterbein, S., Choi, A.M., Burow, M.E., Tou, J. Mechanism of heme oxygenase-1 gene activation by cadmium in MCF-7 mammary epithelial cells - Role of p38 kinase and Nrf2 transcription factor. J Biol Chem 275(36):27694-27702, 2000.
11 Kang, M.I., Kobayashi, A., Wakabayashi, N., Kim, S.G., Yamamoto, M. Scaffolding of Keap1 to the actin cytoskeleton controls the function of Nrf2 as key regulator of cytoprotective phase 2 genes. Proc Natl Acad Sci 101:2046-2051, 2004.   DOI   ScienceOn
12 McMahon, M., Itoh, K., Yamamoto, M., Hayes, J.D. Keap1-dependent proteasomal degradation of transcription factor Nrf2 contributes to the negative regulation of antioxidant response element-driven gene expression. J Biol Chem 278:21592-21600, 2003.   DOI   ScienceOn
13 Yuk, T.H., Kang,. JH., Lee, S.R., Yuk, S.W., Lee, K.G., Song, B.Y., Kim, C.H., Kim, D.W., Kim, D..I, Lee, T.K., Lee, C.H. Inhibitory effect of Carthamus tinctorius L. seed extracts on bone resorption mediated by tyrosine kinase, COX-2 (cyclooxygenase) and PG (prostaglandin) E-2. Am J Chin Med 30(1):95-108, 2002.   DOI   ScienceOn
14 Satoh, T., Okamoto, S., Cui, J., Watanabe, Y., Furuta, K., Suzuki, M., Tohyama, K., Lipton, S.A. Activation of the Keap1/Nrf2 pathway for neuroprotection by electrophilic phase II inducers. Proc Nat Acad Sci 103: 768-773, 2006.   DOI   ScienceOn
15 Moinova, H.R., Mulcahy, R.T. Up-regulation of the human gammaglutamylcysteine synthetase regulatory subunit gene involves binding of Nrf-2 to an electrophile responsive element. Biochem Biophys Res Commun 261: 661-668, 1999.   DOI   ScienceOn
16 Lee, W.J., Kim, H.J., Bae, Y.C., Park, R.W., Choi, S.W., Cho, S.H., Choi, Y.S. Bone-protecting effect of safflower seeds in ovariectomized rats. Calcified Tissue Int 71(1):88-94, 2002.   DOI   ScienceOn
17 Kim, E.O., Oh, J.H., Lee, S.K., Lee, J.Y., Choi, S.W. Antioxidant properties and quantification of phenolic compounds from safflower (Carthamus tinctorius L.) seeds. Food Sci Biotechnol 16(1):71-77, 2007.
18 Juge, N., Mithen, R.F., Traka, M. Molecular basis for chemoprevention by sulforaphane: a comprehensive review. Cell Mol Life Sci 64(9):1105-1127, 2007.   DOI
19 Dalton, T.P., Dieter, M.Z., Yan,g Y., Shertze,r H.G., Neber,t D.W. Knockout of the mouse glutamate cysteine ligase catalytic subunit (Gclc) gene: Embryonic lethal when homozygous, and proposed model for moderate glutathione deficiency when heterozygous. Biochem Biophys Res Commun 279: 324-329, 2000.   DOI   ScienceOn
20 Pompella, A., Visviki,s A., Paolicch,i A., De Tata, V., Casini, A.F. The changing faces of glutathione, a cellular protagonist. Biochem Pharmacol 66(8):1499-1503, 2003.   DOI   ScienceOn
21 Zhang, H.L., Nagatsu, A., Sakakibara, J. Novel antioxidants from safflower (Carthamus tinctorius L.) oil cake. Chem Pharma Bull 44: 874-876, 1996.   DOI   ScienceOn
22 Kim, H.J., Bae, Y.C., Park, R.W., Choi, S.W., Cho, S.H., Choi, Y.S., Lee W.J. Bone-protecting effect of safflower seeds in ovariectomized rats. Calcif Tissue Int 71(1):88-94, 2002.   DOI   ScienceOn
23 Koyama, N., Kuribayashi, K., Seki, T., et al. Serotonin derivatives, major safflower seed antioxidants, inhibit low-density lipoprotein (LDL) oxidation and atherosclerosis in apolipoprotein E-deficient mice. J Agric Food Chem 54:4970-4976, 2006.   DOI   ScienceOn
24 Kim, E.O., Oh, J.H., Lee, S.K., Lee, J.Y., Choi, S.W. Antioxidant properties and quantification of phenolic compounds from safflower (Carthamus tinctorius L.) seeds. Food Sci Biotechnol 16: 71-77, 2007.
25 김창민, 신민교, 안덕균, 이경순. 완역 중약대사전. 서울, 도서출판 정담. p. 4937, 1997.
26 Roehm N.W., Rodgers G.H., Hatfield S.M., Glasebrook A.L. An improved colorimetric assay for cell proliferation and viability utilizing the tetrazolium salt XTT. J Immunol Methods 142(2):257-265, 1991.   DOI   ScienceOn
27 Durackova, Z. Some current insights into oxidative stress. Physiol Res 59: 459-469, 2010.
28 Schraufstatter, I., Hyslop, P.A., Jackson J.H, Cochrane, C.G. Oxidant-induced DNA damage of target cells. J Clin Invest, 82: 1040-1050, 1988.   DOI
29 Motohashi, H., Yamamoto, M. Nrf2-Keap1 defines a physiologically important stress response mechanism. Trends Mol Med 10(11):549-557, 2004.   DOI   ScienceOn
30 Talalay, P. Chemoprotection against cancer by induction of phase 2 enzymes. Biofactors 12: 5-11, 2000.   DOI
31 Satoh, T., Lipton, S.A. Redox regulation of neuronal survival by electrophilic compounds. Trends Neurosci 30:38-45, 2007.
32 Padmanabhan, B., Tong, K.I., Ohta, T., Nakamur, Y., Scharlock, M., Ohtsuji, M., Kang, M.I., Kobayash,i A., Yokoyama, S., Yamamoto, M. Structural basis for defects of Keap1 activity provoked by its point mutations in lung cancer. Mol Cell 21:689-700, 2006.   DOI   ScienceOn
33 Vargas, M.R., Johnson, J.A. The Nrf2-ARE cytoprotective pathway in astrocytes. Expert Rev Mol Med 11: e17, 2009.   DOI   ScienceOn
34 Nguyen, T., Sherratt, P.J., Pickett, C.B. Regulatory mechanisms controlling gene expression mediated by the antioxidant response element. Annu Rev Pharmacol Toxicol 43: 233-260, 2003.   DOI   ScienceOn
35 Itoh, K., Chiba, T., Takahashi, S., Ishii, T., Igarashi, K., Katoh, Y., Oyake, T., Hayashi, N., Satoh, K., Hatayama, I., Yamamoto, M., Nabeshima, Y. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun 236: 313-322, 1997.   DOI   ScienceOn
36 Satoh, T., Lipton, S.A. Redox regulation of neuronal survival by electrophilic compounds. Trends Neurosci 30:38-45, 2007.
37 Surh, Y.J., Na, H.K. NF-kappaB and Nrf2 as prime molecular targets for chemoprevention and cytoprotection with anti-inflammatory and antioxidant phytochemicals. Genes & Nutrition 2(4):313-317, 2008.   DOI   ScienceOn
38 Kang, K.W., Lee, S.J., Kim, S.G. Molecular mechanism of nrf2 activation by oxidative stress. Antioxid Redox Signal 7(11-12):1664-1673, 2005.   DOI   ScienceOn
39 Itoh, K., Tong, K.I., Yamamoto, M. Molecular mechanism activating Nrf2-Keap1 pathway in regulation of adaptive response to electrophiles. Free Radic Biol Med 36:1208-1213, 2004.   DOI   ScienceOn
40 Lee, J.S., Surh, Y.J. Nrf 2 as a novel molecular target for chemoprevention. Cancer Letters 224: 171-184, 2005.   DOI   ScienceOn
41 Ishii, T., Itoh, K., Takahashi, S., Sato, H., Yanagawa, T., Katoh, Y., Bannai, S., Yamamoto, M. Transcription factor Nrf2 coordinately regulates a group of oxidative stress-inducible genes in macrophages. J Biol Chem 275:16023-16029, 2000.   DOI   ScienceOn