Browse > Article

Inhibitory Effects of Piperine on the Production of Nitric Oxide, Interleukin-10 and Interleukine-12 in Murine Peritoneal Macrophages  

Bae, Gi-Sang (Department of Herbology, College of Oriental Medicine, Wonkwang University)
Lee, Ju-Sung (Department of Circulatory Internal Medicine, College of Oriental Medicine, Wonkwang University)
Sung, Kang-Keyng (Department of Circulatory Internal Medicine, College of Oriental Medicine, Wonkwang University)
Park, Sung-Joo (Department of Herbology, College of Oriental Medicine, Wonkwang University)
Publication Information
Journal of Physiology & Pathology in Korean Medicine / v.23, no.2, 2009 , pp. 452-456 More about this Journal
Abstract
The purpose of this study was to investigate the anti-inflammatory effects and cellular mechanism of piperine on murine peritoneal macrophages. To evaluate the effects of piperine, we examined the production of nitric oxide (NO), interleukin (IL)-10 and IL-12. To investigate inhibitory mechanism of piperine, we examined the MAPKs and Ik-Ba in murine peritoneal macrophages, Piperine itself does not have any cytotoxic effect and reduced lipopolysaccharid (LPS), Poly(I:C), CpG-ODN -induced production of NO, IL-10 and IL-12 in peritoneal macrophages. Piperine inhibited the activation of extracelluar signal-regulated kinase (ERK 1/2) and c-Jun NH2-terminal kinase (JNK 1/2) not the activation of p38 and the degradation of inhibitory kappa B a (Ik-Ba) in the LPS-stimulated murine peritoneal macrophages.ln conclusion, Piperine down-regulated LPS-induced production of NO, IL-10 and IL-12, which could provide a clinical basis for anti-inflammatory properties of piperine.
Keywords
piperine; toll like receptor; inflammation; interleukin;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Hirohashi, N., Morrison, D.C. Low-dose lipopolysaccharid (LPS) pretreatment of mouse macrophage modulates LPS-dependent interleukin-6 production in vitro. Infect Immun 64(3):1011, 1996   PUBMED
2 Shoba, G., Joy, D., Joseph, T., Majeed, M., Rajendran, R., Srinivas, P.S. Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med. 64(4):353-356, 1998   DOI   ScienceOn
3 Atal, C.K., Dubey, R.K., Singh, J. Biochemical basis of enhanced drug bioavailability by piperine: evidence that piperine is a potent inhibitor of drug metabolism. J. Pharmacol. Exp. Ther. 232(1):258-262, 1985
4 Pradeep, C.R., Kuttan, G. Effect of Piperine on the Inhibition of Nitric Oxide (NO) and TNF-a Production. Imunopharmacology and Immunotoxicology. 25(3):337-346, 2003   DOI   ScienceOn
5 Lee, A.K., Sung, S.H., Kim, Y.C., Kim, S.G. Inhibition of lipopolysaccharide-inducible nitiric oxide synthase.TNF-$\alpha$ and COX-2 expression by suchinone effects on ${I}\kappa$-${B}\alpha$ phosphorylation.C/EBP and AP-1 activation. British J. Phamacol. 139: 11-20, 2003   DOI   PUBMED   ScienceOn
6 Calixto, J.B., Campos, M.M., Otuki, M.F., Santos, A.R. Anti-inflammatory compounds of plant origin. Part II. modulation of pro-inflammatory cytokines, chemokines and adhesion molecules. Planta Med. 70(2):93-103, 2004   DOI   ScienceOn
7 Seo, J.H., Lim, J.W., Kim, H., Kim, K.H. Helicobacter pylori in a Korean isolate activates mitogen-activated protein kinases. AP-1, and NF-kappaB and induces chemokine expression in gastric epithelial AGS cells. lab Invest. 84: 49-62, 2004   DOI   ScienceOn
8 Bhattacharyya, A., Pathak, S., Datta, S., Chattopadhyay, S., Basu, J., Kundu, M. Mitogen-activated protein kinases and NF-kappaB regulate H. pylori-mediated IL-8 release from macrophages. Biochem J. 366: 376-382, 2002.
9 Meng, F., Lowell, C.A. Lipopolysaccharide(LPS)-induced macrophage activation and signal transduction in the absence of Src-family kinase Hck, Fgr, and Lyn. J Exp Med. 185(9):1661, 1997   DOI   ScienceOn
10 Pradeep, C.R., Kuttan, G. Piperine is a potent inhibitor of nuclear factor-kappaB (NF-kappaB), c-Fos, CREB, ATF-2 and proinflammatory cytokine gene expression in B16F-10 melanoma cells. Int. Immunopharmacol. 4(14):1795-1803, 2004   DOI   PUBMED   ScienceOn
11 Charles, A. Janeway, Jr. Ruslan Medzhitov.Innate immune recognition. Annu. Rev. Immunol. 20: 197-216, 2002   DOI   ScienceOn
12 Lopez-Bojorques, L.N., Dehesa, A.Z., Reyes-Teran, G. Molecular mechanisms involved in the pathogenesis of septic shock. Arch. Med. Res. 35: 465-479, 2004   DOI   ScienceOn
13 Seo, W.G., Pae, H.O., Oh, G.S., Chai, K.Y., Yun, Y.G., Kwon, T.O., Chung, H.T. Inhibitory effect of ethyl acetate fraction from Cudrania tricuspidata on the expression of nitric oxide synthase gene in RAW 264.7 macrophages stimulated with interferon-and lipopolysaccharide. Gen Pharmacol. 35: 21-28, 2000   DOI   PUBMED   ScienceOn
14 Lee, B.G., Kim, S.H., Zee, O.P., Lee, K.R., Lee, H.Y., Han, J.W., Lee, H.W. Suppression of inducible nitric oxide synthase expression in RAW 264.7 macrophages by two-carboline alkaloids extracted from Melia azedarach. Eur J Pharmacol. 406: 301-309, 2000   DOI   ScienceOn
15 Mujumdar, A.M., Dhuley, J.N., Deshmukh, V.K., Raman, P.H., Naik, S.R. Anti-inflammatory activity of piperine. Jpn. J. Med. Sci. Biol. 43(3):95-100, 1999
16 Singh, Y.N. Kava as over review. J. Ethnopharmacol. 37: 18-45, 1992
17 Matsuda, H., Morikawa, T., Ando, S., Toguchida, I. and Yoshikawa, M. Structural requirements of flavonoids for nitric oxide production inhibitory activity and mechanism of action. Bioorganic Med. Chem. 11: 1995-2000, 2003   DOI   ScienceOn
18 Hansson, G.K., Edwards, K. Toll to be paid at the gateway to the vessel wall. Arterioscler. Thromb. Vasc. Biol. 25(6):1085-1087, 2005   DOI   ScienceOn
19 Srinivasan, K. Black pepper and its pungent principle- piperine: a review of diverse physiological effects. Crit. Rev. Food Sci. Nutr. 47(8):735-748, 2007   DOI   PUBMED   ScienceOn
20 Kwqamata, H., Ochiai, H., Mantani, N., terasawa, K. Enhanced expression of inducible nitric oxide synthase by Juzen-taiho-to in LPS-activated RAW264.7 cells, a murine macrophage cell line. Am J Chin Med. 28: 217-226, 2000   DOI   ScienceOn
21 Horwood, N.J., Page, T.H., McDaid, J.P., Palmer, C.D., Campbell, J., Mahon, T., Brennan, F.M., Webster, D., Foxwell, B.M. Bruton's tyrosine kinase is required for TLR2 and TLR4-induced TNF, but not IL-6, production. J Immunol. 176(6):3635-3641, 2006   DOI
22 Kumar, S., Singhal, V., Roshan, R., Sharma, A. Rembhotkar GW. Ghosh B. Piperine inhibits TNF-alpha induced adhesion of neutrophils to endothelial monolayer through suppression of NF-kappaB and IkappaB kinase activation. Eur. J. Pharmacol. 575(1-3):177-186, 2007   DOI   PUBMED   ScienceOn
23 Nathan, C., Xie, Q.W. Nitric oxide synthases: roles, tolls and controls. Cell 78: 915-918, 1994   DOI   ScienceOn
24 Binetruy, B., Smeal, T., Kariu, M. Ha-Ras augments9 c-Jun activity and stimulates phosphoylation of its activation domain. Nature 351: 122-127, 1991   DOI   ScienceOn
25 Chiou, W.F., Chou, C.J., Chen, C.F. Camptothecin suppresses nitric oxide biosynthesis in RAW 264.7 macrophages. Life Sci. 69: 625-635, 2001   DOI   ScienceOn
26 Garrington, T.P., Johnson, G.L. Organization and regulation of mitogen-activated protein kinase signaling pathways. Curr Opin Cell Biol. 11: 211-218, 1999   DOI   ScienceOn