Browse > Article

Preventive Effect of Puerariae Radix and Rehmanniae Radix Preparata on Cisplatin-induced Rat Mesangial Cell Apoptosis  

Ju, Sung-Min (Department of Pathology, College of Oriental Medicine, Wonkwang University)
Park, Jin-Mo (Department of Pathology, College of Oriental Medicine, Wonkwang University)
Jeon, Byung-Jae (Department of Pathology, College of Oriental Medicine, Wonkwang University)
Yang, Hyun-Mo (Department of Pathology, College of Oriental Medicine, Wonkwang University)
Hong, Jae-Eui (Department of Internal Medicine, College of Oriental Medicine, Wonkwang University)
Kim, In-Gyu (Department of Pathology, College of Oriental Medicine, Wonkwang University)
Kim, Won-Sin (Division of Natural Science, College of Natural Sciences, Wonkwang University)
Jeon, Byung-Hun (Department of Pathology, College of Oriental Medicine, Wonkwang University)
Publication Information
Journal of Physiology & Pathology in Korean Medicine / v.22, no.5, 2008 , pp. 1140-1146 More about this Journal
Abstract
One of the major side effects of cisplatin is nephrotoxicity, leading to acute renal failure. Recent study has suggested a role of hydroxyl radicals and p53 in renal cell injury by cisplatin. This study determined the possible involvement of oxidative stress in p53 activation. In rat mesangial cells, cisplatin treatment induced apoptosis and p53 activation. Pifithrin-$\alpha$, a pharmacological inhibitor of p53, suppressed cisplatin-induced apoptosis. Cisplatin also induced reactive oxidative species (ROS) generation. Of interest, cisplatin-induced apoptosis was prevented by N-acetyl-cysteine (NAC), a general antioxidant. NAC diminished p53 activation during cisplatin treatment. Puerariae Radix and Rehmanniae Radix Preparata with antioxidative activity were reduced the cisplatin-induced ROS generation, caspase-3 activity and p53 activation. In conclusion, ROS may contribute to p53 activation to initiate cisplatin-induced apoptosis in rat mesangial cells. In result, antioxidative effect of Puerariae Radix and Rehmanniae Radix Preparata prevented cisplatin-induced apoptosis through inhibition of p53 activation.
Keywords
Puerariae Radix; Rehmanniae Radix Preparata; cisplatin; nephrotoxicity; rat mesangial cell; apoptosis; ROS; p53;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Timmer-Bosscha, H., Mulder, N.H. and de Vries, E.G. Modulation of cis-diamminedichloroplatinum(II) resistance: a review. Br J Cancer 66: 227-238, 1992   DOI   ScienceOn
2 Baliga, R., Zhang, Z., Baliga, M., Ueda, N. and Shah, S.V. In vitro and in vivo evidence suggesting a role for iron in cisplatin-induced nephrotoxicity. Kidney Int. 53: 394-401, 1998   DOI   ScienceOn
3 Liu, H. and Baliga, R. Cytochrome P450 2E1 null mice provide novel protection against cisplatin-induced nephrotoxicity and apoptosis. Kidney Int. 63: 1687-1696, 2003   DOI   ScienceOn
4 Tsuruya, K., Ninomiya, T., Tokumoto, M., Hirakawa, M., Masutani, K. and Taniguchi, M. et al. Direct involvement of the receptor-mediated apoptotic pathways in cisplatin-induced renal tubular cell death. Kidney Int. 63: 72-82, 2003   DOI
5 Jiang, M., Yi, X., Hsu, S., Wang, C.Y. and Dong, Z. Role of p53 in cisplatin-induced tubular cell apoptosis: dependence on p53 transcriptional activity. Am. J. Physiol. Renal. Physiol. 287: F1140-F1147, 2004   DOI
6 Martindale, J.L. and Holbrook, N.J. Cellular response to oxidative stress: signaling for suicide and survival. J. Cell Physiol. 192: 1-15, 2002   DOI   ScienceOn
7 Taguchi, T., Nazneen, A., Abid, M.R. and Razzaque, M.S. Cisplatin-associated nephrotoxicity and pathological events. Contrib. Nephrol. 148: 107-121, 2005
8 Alarcon-Vargas, D. and Ronai, Z. p53-Mdm2-the affair that never ends. Carcinogenesis 23: 541-547, 2002   DOI   ScienceOn
9 Sablina, A.A., Budanov, A.V., Ilyinskaya, G.V., Agapova, L.S., Kravchenko, J.E. and Chumakov, P.M. The antioxidant function of the p53 tumor suppressor. Nat. Med. 11: 1306-1313, 2005   DOI   ScienceOn
10 김창민, 신민교, 안덕균, 이경순. 중약대사전. 서울, 정담, pp 33-40, 1998
11 Yao, S.C., Wang, L.L. and Yeung, C.S. Pharmacology and applications of chinese materia medica. World Scientific, Hongkong, pp 461-467, 1981
12 Kaushal, G.P., Kaushal, V., Hong, X. and Shah, S.V. Role and regulation of activation of caspases in cisplatin-induced injury to renal tubular epithelial cells. Kidney Int. 60: 1726-1736, 2001   DOI   ScienceOn
13 Tsuruya, K., Tokumoto, M., Ninomiya, T., Hirakawa, M., Masutani, K. and Taniguchi, M. et al. Antioxidant ameliorates cisplatin-induced renal tubular cell death through inhibition of death receptor-mediated pathways. Am. J. Physiol. Renal. Physiol. 285: F208-F218, 2003   DOI
14 Raju, B.L, Lin, S.J., Hou, W.C., Lai, Z.Y., Liu, P.C. and Hsu, F.L. Antioxidant iridoid glucosides from Wendlandia formosana. Nat. Prod. Res. 8: 357-364, 2004
15 Nath, K.A. and Norby, S.M. Reactive oxygen species and acute renal failure. Am. J. Med. 109: 665-678, 2000   DOI   ScienceOn
16 Yu, H.H., Seo, S.J., Moon, H.D., Park, R.K., So, H.S., Jeon, B.H., Jung, S.Y. and You, Y.O. Protective effect of pueraria radix extract on the cisplatin-induced cytotoxicity of HEI-OC1 cells via scavenging of free radicals. Kor. J. Orien. Physiol. Pathol. 21: 462-467, 2007   과학기술학회마을
17 박종옥, 김경순, 지영애, 류병호. 갈근에서 분리한 Daidzin 및 Puerarin의 사람 Low Density Lipoprotein 대한 항산화 효과. 한국식품영양과학회지 26: 25-31, 1997
18 Cummings, B.S. and Schnellmann, R.G. Cisplatin-induced renal cell apoptosis: caspase 3-dependent and -independent pathways. J. Pharmacol. Exp. Ther. 302: 8-17, 2002   DOI   ScienceOn
19 Yu, H.H., Seo, S.J., Kim, Y.H., Park, R.K., So, H.S., Jeon, B.H., Shin, M.K., Jung, S.Y., Kim, K.Y. and You, Y.O. Protective effect of rehmannia radix preparata extract on the cisplatin-induced cytotoxicity of HEI-OC1 cells via scavenging of free radicals. 19(5):1349-1355, 2005
20 Bragado, P., Armesilla, A., Silva, A. and Porras, A. Apoptosis by cisplatin requires p53 mediated p38alpha MAPK activation through ROS generation. Apoptosis 12: 1733-1742, 2007   DOI   ScienceOn
21 Matsushima, H., Yonemura, K., Ohishi, K. and Hishida, A. The role of oxygen free radicals in cisplatin-induced acute renal failure in rats. J. Lab. Clin. Med. 131: 518-526, 1998   DOI   ScienceOn
22 Xu, Y. Regulation of p53 responses by post-translational modifications. Cell Death Differ. 10: 400-403, 2003   DOI   ScienceOn
23 Sridhar, C., Subbaraju, G.V,, Venkateswarlu. Y. and Venugopal, R.T. New acylated iridoid glucosides from Vitex altissima. J. Nat. Prod. 67: 2012-2016, 2004   DOI   ScienceOn
24 Park, M.S., De Leon, M. and Devarajan, P. Cisplatin induces apoptosis in LLC-PK1 cells via activation of mitochondrial pathways. J. Am. Soc. Nephrol. 13: 858-865, 2002
25 Sueishi, K., Mishima, K., Makino, K., Itoh, Y., Tsuruya, K. and Hirakata, H. et al. Protection by a radical scavenger edaravone against cisplatin-induced nephrotoxicity in rats. Eur. J. Pharmacol. 451: 203-208, 2002   DOI   ScienceOn
26 Laptenko, O. and Prives, C. Transcriptional regulation by p53: one protein, many possibilities. Cell Death Differ. 13: 951-961, 2006   DOI   ScienceOn
27 Fei, P. and El-Deiry, W.S. P53 and radiation responses. Oncogene 22: 5774-5783, 2003   DOI   ScienceOn
28 Jiang, M., Wei, Q., Pabla, N., Dong, G., Wang, C.Y., Yang, T., Smith, S.B. and Dong, Z. Effects of hydroxyl radical scavenging on cisplatin-induced p53 activation, tubular cell apoptosis and nephrotoxicity. Biochem. Pharmacol. 73: 1499-1510, 2007   DOI   ScienceOn
29 Safirstein, R., Winston, J., Goldstein, M., Moel, D., Dikman, S. and Guttenplan, J. Cisplatin nephrotoxicity. Am. J. Kidney Dis. 8: 356-367, 1986   DOI
30 Sheikh-Hamad, D., Cacini, W., Buckley, A.R., Isaac, J., Truong, L.D. and Tsao, C.C. et al. Cellular and molecular studies on cisplatin-induced apoptotic cell death in rat kidney. Arch. Toxicol. 78: 147-155, 2004   DOI   ScienceOn
31 Baek, S.M., Kwon, C.H., Kim, J.H., Woo, J.S., Jung, J.S. and Kim, Y.K. Differential roles of hydrogen peroxide and hydroxyl radical in cisplatin-induced cell death in renal proximal tubular epithelial cells. J. Lab. Clin. Med. 142: 178-186, 2003   DOI   ScienceOn
32 Tang, W. and Eisenbrand, G. Chinese drugs of plant origin: Chemistry, pharmacolgy, and use in traditional modern medicine. Springer-Verlag, Berlin, pp 849-854, 1992
33 Lieberthal, W., Triaca, V. and Levine, J. Mechanisms of death induced by cisplatin in proximal tubular epithelial cells: apoptosis vs. necrosis. Am. J. Physiol. 270: F700-F708, 1996
34 Baliga, R., Ueda, N., Walker, P.D. and Shah, S.V. Oxidant mechanisms in toxic acute renal failure. Drug Metab. Rev. 31: 971-997, 1999   DOI   ScienceOn
35 Goldstein, R.S. and Mayor, G.H. Minireview. The nephrotoxicity of cisplatin. Life Sci. 32: 685-690, 1983   DOI
36 Van Rensburg, S.J., Daniels, W.M., van Zyl, J.M. and Taljaard, J.J. A comparative study of the effects of cholesterol, beta-sitosterol, beta-sitosterol glucoside, dehydroepiandrosterone sulphate and melatonin on in vitro lipid peroxidation. Metabolic Brain Disease 5: 257-265, 2000
37 Toda, S. and Shirataki, Y. Comparison of antioxidative and chelating effects of daidzein and daidzin on protein oxidative modification by copper in vitro. Biol. Trace Elem. Res. 79: 83-89, 2001   DOI   ScienceOn
38 Yoshida, Y. and Niki, E. Antioxidant effects of phytosterol and its components. J. Nutr. Sci. Vitaminol.(Tokyo) 49: 277-280, 2003   DOI   ScienceOn
39 Lai, H.H. and Yen, G.C. Inhibitory effect of isoflavones on peroxynitrite-mediated low-density lipoprotein oxidation. Biosci. Biotechnol. Biochem. 66: 22-28, 2002   DOI   ScienceOn