Browse > Article

Regulatory Effects of Cheunggansoyo-san on Pathophysiological Changes Induced by Hyperlipidemic Diets in the Mice  

Park Kyung-Ho (Department of Pathology, College of Oriental Medicine, Daejeon University)
NamGung Uk (Department of Neurophysiology, College of Oriental Medicine, Daejeon University)
Lee Yong-Koo (Department of Internal medicine, College of Oriental Medicine, Daejeon University)
Kang Tak-Lim (Department of Pharmacology, College of Oriental Medicine, Daejeon University)
Kim Dong-Hee (Department of Pathology, College of Oriental Medicine, Daejeon University)
Publication Information
Journal of Physiology & Pathology in Korean Medicine / v.19, no.6, 2005 , pp. 1629-1635 More about this Journal
Abstract
Hyperlipidemia is caused by high dietary intake of cholesterol and saturated fats, and is known as a major risk factor for atherosclerosis. In the oriental medicine, Cheunggansoyo-san (CGSYS) has been used for supplementing hematopoietic function and for treating cardiovascular disorders. In the present study, CGSYS was administered into hyperlipidemic mice. Increases in body weight and cholesterol levels induced by hyperlipidemic diets for 6 weeks were significantly inhibited by CGSYS administration. Serum levels of glucose, triglyceride, SGOT, and SGPT values were all decreased by CGSYS treatment compared with hyperlipidemic dietary mice. Moreover, CGSYS decreased LDL-cholesterol, but increased HDL-cholesterol levels in hyperlipidemic mice. Thus, the present results suggest that CGSYS appears to De effective for down-regulating risk factors of hyperlipidemia.
Keywords
Cheunggansoyo-san(CGSYS); hyperlipidemic dietary mice; cholesterol; glucose; triglyceride level;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Giese, K., Fantl, W.J., Vitt, C., Stephans, J.C., Cousens, L., Wachowicz, M., Williams, L.T. Reduction of food intake and weight gain by the ob protein requires a specific secondary structure and is reversible. Mol Med. 2(1):50-58, 1996.
2 Herrera, V.L., Makrides, S.C., Xie, H.X., Adari, H., Krauss, R.M., Ryan, U.S., Ruiz-Opazo, N. Spontaneous combined hyperlipidemia, coronary heart disease and decreased survival in Dahl salt-sensitive hypertensive rats transgenic for human cholesteryl ester transfer protein. Nat Med. 5(12):1383-1389, 1999.
3 Hotamisligil, G.S. Molecular mechanisms of insulin resistance and the role of the adipocyte. Int J Obes Relat Metab Disord. 24 Suppl 4, S23-27, 2000.
4 Jones, P.H. Diet and pharmacologic therapy of obesity to modify atherosclerosis. Curr Atheroscler Rep. 2(4):314-320, 2000.
5 Kim. et al. 전국한의과대학 본초학교수 공편저. 본초학. 서울 영림사, 1990.
6 Paigen, B., Plump, A.S., Rubin, E.M. The mouse as a model for human cardiovascular disease and hyperlipidemia. Curr Opin Lipidol. 5(4):258-264, 1994.
7 Pedrinelli, R., Esposti, E.D., Dell'Omo, G. LDL cholesterol and global risk stratification in referred hypertensive patients. Atherosclerosis. 180(1):137-143, 2005.
8 Scheuch, K., Hanefeld, M., Grassier, J., Seibt, R., Naumann, H.J. ypertriglyceridaemia in mild hypertension: impact on cardiovascular andhormonal reactivity under different stress tests. J Hum Hypertens. 13(8):533-539, 1999.
9 Wexle,r B.C., lams, S.G., McMurtry, J.P. Pathophysiological differences between obese and non-obese spontaneously hypertensive rats. Br J Exp Pathol. 61(2):195-207, 1980.
10 Abe, H., Yamada, N., Kamata, K., Kuwaki, T., Shimada, M., Osuga, J., Shionoiri, F., Yahagi, N., Kadowaki, T., Tamemoto, H., Ishibashi, S., Yazaki, Y., Makuuchi, M. Hypertension, hypertriglyceridemia, and impaired endothelium-dependent vascular relaxation in mice lacking insulin receptor substrate-1. J Clin Invest. 15;101(8):1784-1788, 1998.
11 Arslan, N., Buyukgebiz, B., Ozturk, Y., Cakmakci, H. Fatty liver in obese children: prevalence and correlation with anthropometric measurements and hyperlipidemia. Turk J Pediatr. 47(1):23-27, 2005.
12 Clarkson, T.B. Animal models of atherosclerosis. Adv Vet Sci Comp Med. 16, pp 151-173, 1972.
13 den Boer, M., Voshol, P.J., Kuipers, F., Havekes, L.M., Romijn, J.A. Hepatic steatosis: a mediator of the metabolic syndrome. Lessons from animal models. Arterioscler Thromb Vasc Biol. 24(4):644-649, 2004.
14 Espirito, Santo, S.M., Rensen, P.C., Goudriaan, J.R., Bensadoun, A., Bovenschen, N., Voshol, P.J., Havekes, L.M., van Vlijmen, B.J. Triglyceride-rich lipoprotein metabolism in unique VLDL receptor, LDL receptor,and LRP triple-deficient mice. J Lipid Res. 46(6):1097-1102, 2005.
15 Chang, W.T., Dao, J., Shao, Z.H. Hawthorn: potential roles in cardiovascular disease. Am J Chin Med. 33(1):1-10, 2005.
16 Takahashi, N., Qi, Y., Patel, H.R., Ahima, R.S. A novel aminosterol reverses diabetes and fatty liver disease in obese mice. J Hepatol. 41(3):391-398, 2004.
17 Kim, Y.Y., Kang, H.J., Ko, S.K., Chung, S.H. Sopungsungi-won (SP) prevents the onset of hyperglycemia and hyperlipidemia in Zucker diabetic fatty rats. Arch Pharm Res. 25(6):923-931, 2002.
18 Saltiel, A.R., Kahn, C.R. Insulin signalling and the regulation of glucose and lipid metabolism. Nature. 414(6865):799-806, 2001.
19 Arafa, H.M. Curcumin attenuates diet-induced hypercholesterolemia in rats. Med Sci Monit. 11(7):228-234, 2005.
20 Vischer, U.M. Hyperglycemia and the pathogenesis of atherosclerosis: lessons from murine models. Eur J Endocrinol. 140(1):1-3, 1999.
21 Ponder, K.P. Systemic gene therapy for cardiovascular disease. Trends Cardiovasc Med. 9(6):158-162, 1999.
22 Cryer, P.E., Daughaday, W.H. Diabetic ketosis: elevated serum glutamic-oxaloacetic transaminase (SGOT) and other findings determined by multi-channel chemical analysis. Diabetes. 18(11):781-785, 1969.
23 Jones, P.H. Clinical diagnosis of lipid disorders. Clin Cornerstone. 1(1):15-30, 1998.
24 Kim, S.O., Yun, S.J., Jung, B., Lee, E.H., Hahm, D.H., Shim, I., Lee, H.J. ypolipidemic effects of crude extract of adlay seed (Coix lachrymajobi var.mayuen) in obesity rat fed high fat diet: relations of TNF-alpha and leptin mRNA expressions and serum lipid levels. Life Sci. 75(11):1391-1404, 2004.
25 Powell-Braxton, L., Veniant, M., Latvala, R.D., Hirano, K.I., Won, W.B., Ross, J., Dybda, I.N., Zlot, C.H., Young, S.G., Davidson, N.O. A mouse model of human familial hypercholesterolemia: markedly elevated lowdensity lipoprotein cholesterol levels and severe atherosclerosis on a low-fatchow diet. Nat Med. 4(8):934-938, 1998.
26 la Cour, B., Molgaard, P., Yi, Z. Traditional Chinese medicine in treatment of hyperlipidaemia. J Ethnopharmacol. 46(2):125-129, 1995.
27 Quaschning, T., Schomig, M., Keller, M., Thiery, J., Nauck, M., Schollmeyer, P., Wanner, C., Kramer-Guth, A. Non-insulin-dependent diabetes mellitus and hypertriglyceridemia impairlipoprotein metabolism in chronic hemodialysis patients. J Am Soc Nephrol. 10(2):332-341, 1999.
28 Duplain, H., Burcelin, R., Sartori, C., Cook, S., Egli, M., Lepori, M., Vollenweider, P., Pedrazzini, T., Nicod, P., Thorens, B., Scherrer, U. Insulin resistance, hyperlipidemia,and hypertension in mice lacking endothelial nitric oxide synthase. Circulation. 17;104(3):342-345, 2001.
29 Masucci-Magou1as, L., Goldberg.. I.J., Bisgaier, C.L., Serajuddin, H., Francone, O.L., Breslow, J.L., Tal, A.R. A mouse model with features of familial combined hyperlipidemia. Science. 275(5298):391-394, 1997.
30 Masuzaki, H., Paterson, J., Shinyama, H., Morton, N.M., Mullins, J.J., Seckl, J.R., Flier, J.S. A transgenic model of visceral obesity and the metabolic syndrome. Science. 294(5549):2166-2170, 2001.
31 Dandona, P., Aljada, A., Chaudhuri, A., Mohanty, P., Garg, R. Metabolic syndrome: a comprehensive perspective based on interactions between obesity, diabetes, and inflammation. Circulation. 22;111(11):1448-1454, 2005.
32 Krause, B.R., Princen, H.M. Lack of predictability of classical animal models for hypolipidemic activity: agood time for mice? Atherosclerosis. 140(1):15-24, 1998.
33 Molnar, J., Yu, S., Mzhavia, N., Pau, C., Chereshnev, I., Dansky, H.M. Diabetes induces endothelial dysfunction but does not increase neointimal formation in high-fat diet fed C57BL/6J mice. Circ Res. 96(11):1178-1184, 2005.
34 Fong, T.M. Targeting metabolic syndrome. Expert Opin Investig Drugs. 13(9):1203-1206, 2004.
35 Rao, P.N., Rao, G.V. Transaminases of serum & tissues in ypercholesteremia. Indian J Exp Biol. 17(7):665-667, 1979.
36 Wiklund, O., Angelin, B., Fager, G., Eriksson, M., Olofsson, S.O., Berglund, L., Linden, T., Sjoberg, A., Bondjers, G. Treatment of familial hypercholesterolaemia: a controlled trial of the effects of pravastatin or cholestyramine therapy on lipoprotein and apolipoprotein levels. J Intern Med. 228(3):241-247, 1990.
37 Aouizerat, B.E., Allayee, H., Bodnar, J., Krass, K.L., Peltonen, L., de Bruin, T.W., Rotter, J.I., Lusis, A.J. Novel genes for familial combined hyperlipidemia. Curr Opin Lipidol. 10(2):113-122, 1999.
38 Ashen, M.D., Blumenthal, R.S. Clinical practice. Low HDL cholesterol levels. N Engl J Med. 22;353(12):1252-1260, 2005.
39 Inoue, M., Shen, Y.R., Ogihara, Y. Shosaikoto (kampo medicine) protects macrophage function from suppression byhypercholesterolemia. Biol Pharm Bull. 19(4):652-654, 1996.
40 Zuccala, A. Dyslipidemia and hypertension: twin killers in renal vascular disease. Am J Kidney Dis. 37(6):1319-1323, 2001.   DOI   ScienceOn
41 Rubin, D.C. Nutrient absorption. Curr Opin Gastroenterol. 20(2):65-69, 2004.