Browse > Article
http://dx.doi.org/10.17137/korrae.2018.26.2.33

Adsorption of Pb(II) by Cherry (Prunus x yedoensis) Leaf-Derived Biochar  

Lee, Myoung-Eun (Department of Urban System Engineering, Gyeongnam National University of Science and Technology (GNTECH))
Hwang, Kyu-Taek (Department of Environmental Engineering, GNTECH)
Kim, Sun-Young (Department of Environmental Engineering, GNTECH)
Chung, Jae-Woo (Department of Environmental Engineering, GNTECH)
Publication Information
Journal of the Korea Organic Resources Recycling Association / v.26, no.2, 2018 , pp. 33-41 More about this Journal
Abstract
Large amounts of leaves from street trees fall onto the streets annually and need to be cleaned and treated. Cherry trees are common street trees in Korea. The adsorption characteristics of Pb(II) by cherry leaf (CL) and cherry leaf-derived biochar (CB) were studied through a series of batch experiments. CB was produced through the carbonization of CL at $800^{\circ}C$ for 90 min. Carbonization increased the C content and pH value, while decreased H and O contents. Well developed pore structure was observed at the surface of CB. The pseudo-second order model better described the kinetics of Pb(II) adsorption onto CL and CB, indicating that the rate-limiting step of the heavy metal sorption is chemical sorption. Fast adsorption rates and high adsorption capacities were obtained by the carbonization from CL to CB. Langmuir models better adequately described the Pb(II) adsorption onto CL and CB. Maximum adsorption capacities of Pb(II) expressed by Langmuir constant, $Q^0$ were 37.31 mg/g and 94.34 mg/g, when CL and CB were used as adsorbents, respectively.
Keywords
Cherry leaf; Biochar; Lead(II); Adsorption; Kinetics; Isotherm;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Demirbas, A., "Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues", Journal of Analytical and Applied Pyrolysis, 72(2), pp. 243-248. (2004).   DOI
2 Song, W. and Guo, M., "Quality variations of poultry litter biochar generated at different pyrolysis temperatures", Journal of Analytical and Applied Pyrolysis, 94, pp. 138-145. (2012).   DOI
3 Jeong, C. Y., Dodla, S. K. and Wang, J. J., "Fundamental and molecular composition characteristics of biochars produced from sugarcane and rice crop residues and by-products", Chemosphere, 142, pp. 4-13. (2016).   DOI
4 Sohi, S. P., Krull, E., Lopez-Capel, E. and Bol, R., "A review of biochar and its use and function in soil", Advances in Agronomy, Sparks, D. L., Ed., Academic Press, Burlington, MA, USA, pp. 47-82. (2010).
5 Spokas, K. A., "Review of the stability of biochar in soils: Predictability of O:C molar ratio", Carbon Management, 1(2), pp. 289-303. (2010).   DOI
6 Ioannidou, O. and Zabaniotou, A., "Agricultural residues as precursors for activated carbon production-a review", Renewable and Sustainable Energy Reviews, 11(9), pp. 1966-2005. (2007).   DOI
7 Mui, E. L. K., Cheung, W. H., Valix M. and McKay G., Activated carbon from bamboo scaffolding using acid activation, Separation and Purification Technology, 74(2), pp. 213-218. (2010).   DOI
8 Bak, Y.-C., Cho, K.-J. and Choi, J.-H., "Production and $CO_2$ adsorption characteristics of activated carbon from bamboo by $CO_2$ activation method", Korean Chemical Engineering Research, 43(1), pp. 146-152. (2005).
9 Park, J. H., Lee, S.-J., Lee, M.-E. and Chung, J. W., "Comparison of heavy metal immobilization in contaminated soils amended with peat moss and peat moss-derived biochar", Environmental Science Process & Impacts, 18(4), pp. 514-520. (2016).   DOI
10 Tong, X. J., Li, J. Y., Yuan, J. H. and Xu, R. K., "Adsorption of Cu(II) by biochar from three crop straws", Chemical Engineering Journal, 172(2-3), pp. 828-834. (2011).   DOI
11 Lee, M.-E., Park, J. H., and Chung, J. W., "Adsorption of Pb(II) and Cu(II) by ginkgo-leaf- derived biochar produced under various carbonization temperatures and times", International Journal of Environmental Research and Public Health, 14, 1528. (2017).   DOI
12 Gollmann, M. A. C., da Silva, M. M., Masuero, A. B. and dos Santos, J. H. Z., "Stablization and solidification of Pb in cement matrices", Journal of Hazardous Materials, 179(1-3), pp. 507-514. (2010).   DOI
13 ATSDR, Agency for Toxic Substances and Disease Registry, Toxicological Profile for Lead, Atlanta. (2007).
14 Ho, Y. S., "Review of second-order models for adsorption systems", Journal of Hazardous Materials, 136(3), pp. 681-689. (2006).   DOI
15 Park, J. H., Bolan, N., Megharaj, M. and Naidu, R., "Comparative value of phosphate sources on the immobilization of lead, and leaching of lead and phosphorus in lead contaminated soils", Science of The Total Environment, 409(4), pp. 853-860. (2011).   DOI
16 Lee, S.-J., Park, J. H., Ahn, Y.-T. and Chung, J. W., "Comparison of heavy metal adsorption by peat moss and peat moss-derived biochar produced under different carbonization conditions", Water Air Soil Pollution, 226, p. 9. (2015).   DOI
17 Lee, M.-E. and Chung, J. W., "Effects of acid modification on Pb(II) and Cu(II) adsorption of bamboo-based activated carbon", Journal of the Korea Organic Resource Recycling Association, 24(1), pp. 3-10. (2016).   DOI
18 Pellera, F.-M., Giannis, A., Kalderis, D., Anastasiadou, K., Stegmann, R., Wang, J.-Y. and Gidarakos, E., "Adsorption of Cu(II) ions from aqueous solutions on biochars prepared from agricultural by-products", Journal of Environmental Management, 96(1), pp. 35-42. (2012).   DOI
19 Beach, T., Luzzadder-Beach, S., Cook, D., Dunning, N., Kennett, D. J., Krause, S., Terry, R., Trein, D. and Valdez, F., "Ancient Maya impacts on the Earth's surface: An Early Anthropocene analog?", Quaternary Science Reviews, 124(15), pp. 1-30. (2015).   DOI
20 Ippolito, J. A., Spokas, K. A., Novak, J. M., Lentz, R. D. and Cantrell, K. B., "Biochar elemental composition and factors influencing nutrient retention", Lehmann, J., Joseph, S. (Ed.), Biochar for Environmental Management: Science, Technology and Implementation, Routledge New York, p. 139-163. (2015).
21 Aksu, Z., "Determination of the equilibrium, kinetic and thermodynamic parameters of the batch biosorption of lead(II) ions onto Chlorella vulgaris", Process Biochemistry, 38(1), pp. 89-99. (2002).   DOI
22 Yuan, J. H., Xu, R. K. and Zhang, H., "The forms of alkalis in the biochar produced from crop residues at different temperatures", Bioresource Technology, 102(3), pp. 3488-3497. (2011).   DOI
23 Ahmad, M., Rajapaksha, A. U., Lim, J. E., Zhang, M. Bolan, N., Mohan, D., Vithanage, M., Lee S. S. and Ok, Y. S., "Biochar as a sorbent for contaminant management in soil and water: A review", Chemosphere, 99, pp. 19-33. (2014).   DOI
24 Lee, M.-E., Park, J. H., Chung, J. W., Lee, C.-Y. and Kang, S., "Removal of Pb and Cu ions from aqueous solution by $Mn_3O_4$-coated activated carbon", Journal of Industrial and Engineering Chemistry, 21(25), pp. 470-475. (2015).   DOI
25 Ho, Y. S. and McKay, G., "Pseudo-second order model for sorption processes", Process Biochemistry, 34(5), pp. 451-465. (1999).   DOI