Browse > Article
http://dx.doi.org/10.17137/korrae.2017.25.3.55

Enhanced Anaerobic Digestion Efficiency of Food Waste by Seaweed Addition  

Shin, Sang-Ryong (Department of Civil Engineering, Inha University)
Lee, Mo-Kwon (Department of Civil Engineering, Inha University)
Kwon, Oh-Tae (Incheon Science High School)
Kim, Ji-Hoon (Incheon Science High School)
Han, Gyu-Hyeon (Incheon Science High School)
Kim, Dong-Hoon (Department of Civil Engineering, Inha University)
Publication Information
Journal of the Korea Organic Resources Recycling Association / v.25, no.3, 2017 , pp. 55-62 More about this Journal
Abstract
In this study, we investigated the effect of seaweed (SW) addition on the anaerobic digestion of food waste (FW). Anaerobic batch experiments were carried out at various substrate concentrations (2.5 to 10.0 g VS/L) and mixing ratios (FW:SW=100:0, 75:25, 50:50, 25:75 and 0:100 on VS basis) of FW and SW. The methane yield of FW alone was 394, 377, 276, $49mL\;CH_4/g\;VS_{added}$ at each substrate concentration (2.5 to 10.0 g VS/L). In cases of co-digestion, methane yield decreased (up to 15 %) with increasing mixing ratio of SW at low substrate concentration (2.5 to 5.0 g VS/L), while it increased (up to 240 %) at high substrate concentration (7.5 to 10.0 g VS/L). The synergistic effect was calculated based on the amount of methane generated from the single-feedstock digestion of FW and SW. The synergistic effect was not found at 2.5 and 5.0 g VS/L. However, the synergistic effect increased (up to 25% = synergistic increment/total methane production at 10.0 g VS/L, FW:SW=50:50) with increasing the ratio of seaweed at 7.5 and 10.0 g VS/L. At 10.0 g VS/L of FW alone, the accumulated amount of organic acids was 7,426 mg COD/L, which was decreased to 2,346 mg COD/L by seaweed (FW:SW=50:50) addition. The reason for the synergistic effect was to control the production rate of the organic acids by adding SW that has a relatively lower biodegradability compared to FW.
Keywords
Food waste; Seaweed; Organic acids; Co-digestion; Synergistic effect;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 [환경부, 전국 폐기물 발생 및 처리현황] Ministry of Environment, "Status of waste production and disposal in Korea", (2015)
2 [박종웅, 최동혁, "음폐수를 탄소원으로 이용시 생분해 및 탈질특성에 미치는 영향", 한국도시환경학회지] Park, J.W., Choi, D.H., "Effect of Biodegradation and Denitrification Characteristics using Carbon Source with Food Wastes Leachate", Jounal of Korean Society of Urban Environment, 11(1), pp. 41-48. (2011).
3 Ohkouchi, Y., Inoue, Y., "Direct production of L(+)-lactic acid from starch and food wastes using Lactobacillus manihotivorans LMG18011", Bioresource Technology, 97, pp. 1554-1562. (2006).   DOI
4 [박은영, 정승미, 김용진, 이동훈, "바이오에탄올 생산을 위한 해조류의 가수분해 방법에 대한 고찰", 한국폐기물자원순환학회지] Park, E.Y., Jeong, S.M., Kim, Y.J., Lee, D.H., "Review on hydrolysis methods of the macroalgae for production of bioethanol", Journal of Material Cycles and Waste Management, 29(4), pp. 323-333. (2012).
5 APHA., "Standard Methods for the Examination of Water and Wastewater", 21th Edition. (2005).
6 Zhang, C., Su, H., Baeyens, J., Tan, T., "Reviewing the anaerobic digestion of food waste for biogas production", Renewable and Sustainable Energy Reviews, 38, pp. 383-392. (2014).   DOI
7 [김동진, "혐기성소화에서의 바이오가스 생산증진을 위한 슬러지 전처리 기술", 청정기술] Kim, D.J., "Pre-treatment technology of wastewater sludge for enhanced biogas production in anaerobic digestion", CLEAN TECHNOLOGY, 19(4), pp. 355-369. (2013).   DOI
8 [최재민, 김정광, 이채영, "수거 형태에 따른 음식물류 폐기물의 혐기성 분해 특성", 유기물자원화] Choi, J.M., Kim, J.K., Lee, C.Y., "Biodegradation characteristics of food waste on various collection systems", Journal of the Korea Organic Resource Recycling Association, 23(1), pp. 23-28. (2015).   DOI
9 Edner, J.H., Labatut, R.A., Lodge, J.S., Williamson, A.A., and Trabold, T.A., "Anaerobic co-digestion of commercial food waste and dairy manure: Characterizing biochemical parameters and synergistic effects", Waste Management, 52, pp. 286-294. (2016).   DOI
10 Li, Q., Li, H., Wang, G., and Wang, X., "Effects of loading rate and temperature on anaerobic co-digestion of food waste and waste activated sludge in a high frequency feeding system, looking in particular at stability and efficiency", Bioresource Technology, 237, pp. 231-239. (2017).   DOI
11 [박재일, 우희철, 이재화, "해양조류로부터 바이오에너지 생산 : 현황 및 전망", 화학공학] Park, J.I., Woo, H.C., Lee, J.H., "Production of Bio-energy from Marine Algae: Status and Perspectives", Korean Chem. Eng. Res, 46(5), pp. 833-844. (2008).
12 [김정민, 이영호, 정성훈, 이진태, 조무환, "해조류 혐기성 발효를 이용한 메탄생산", 청정/대체(절약)에너지기술] Kim, J.M., Lee, Y.H., Jung, S.H., Lee, J.T., Cho, M.H., "Production of Methane from Anaerobic Fermentation of Marine Macro-algae", CLEAN TECHNOLOGY, 16(1), pp. 51-58. (2010).
13 [김정환, 김연희, 김성구, 김병우, 남수완, "해양 미생물 유래 해조 다당류 분해 효소의 특성 및 산업적 응용", 한국미생물.생명공학회지] Kim, J.H., Kim, Y.H., Kim, S.K., Kim, B.W., Nam, S.W., "Properties and Industrial Applications of Seaweed Polysaccharides-degrading Enzymes from the Marine Microorganisms", Korean J. Microbiol. Biotechnol, 39(3), pp. 189-199. (2011).
14 Yun, Y.M., Cho, S.K., Kim, H.W., Jung, K.W., Shin, H.S., and Kim, D.H., "Elucidating a synergistic effect of food waste addition on the enhanced anaerobic digestion of waste activated sludge", Korean J. Chem. Eng., 31(8), pp. 1542-1546. (2014).
15 [신상룡, 이모권, 김민균, 홍성민, 김동훈, "해조류 첨가를 통한 하수슬러지 산발효 효율 증대", 유기물자원화] Shin, S.R., Lee, M.K., Kim, M.G., Hong, S.M., and Kim, D.H., "Enhanced Acidification Efficiency of Sewage Sludge by Seaweed Addition", Journal of the Korea Organic Resource Recycling Association, 25(1), pp. 15-21. (2017).   DOI
16 Liu, G., Liu, X., Li, Y., He, Y., Zhang, R., "Influence of pH Adjustment and Inoculum on Anaerobic Digestion of Kitchen Waste for Biogas Producing", Journal of Biobased Materials and Bioenergy, 5(3), pp. 1-6. (2011).   DOI
17 Zhang, C., Su, H., Baeyens, J., Tan, T., "Reviewing the anaerobic digestion of food waste for biogas production", Renewable and Sustainable Energy Reviews, 38, pp. 383-392. (2014).   DOI