Browse > Article
http://dx.doi.org/10.17137/korrae.2016.24.3.53

Assessment of Sludge Solubilization by Aeration and Zero-valent Iron As a Pre-treatment for Anaerobic Digestion  

Kim, Yong-Jun (Department of Environmental and Energy Engineering, Anyang University)
Park, Jin-Kyu (Ecowillplus Co., Ltd.)
Tameda, Kazuo (Graduate School of Engineering, Fukuoka University)
Lee, Nam-Hoon (Department of Environmental and Energy Engineering, Anyang University)
Publication Information
Journal of the Korea Organic Resources Recycling Association / v.24, no.3, 2016 , pp. 53-61 More about this Journal
Abstract
The reaction of zero-valent iron (ZVI) with oxygen can produce reactive oxidants capable of oxidizing organic compounds. Thus, the aim of this study was to investigate the effect of pre-treatment on sludge solubilization by ZVI and aeration. The results demonstrated that the aeration pre-treatment with ZVI method was more effective than the only aeration for improving sludge solubilization, indicating that ZVI increased the extent of sludge solubilization. In addition, removal rate of $NH_3-N$ by ZVI and aeration was found to be 34%, while only aeration was 24%. Thus, ZVI and aeration can be employed as an efficient pre-treatment option to achieve higher sludge solubilization and decrease the toxic effect of $NH_3-N$ for sludge digestion.
Keywords
Sewage sludge; Anaerobic digestion; Solubilization; Aeration; Zero-valent iron;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Ahn, Y. M., Wi, J., Park, J. K., Higuchi, S. and Lee, N. H., "Effects of Pre-Aeration on the Anaerobic Digestion of Sewage Sludge", Environ. Eng. Res, 19(1), pp. 59-66. (2014).   DOI
2 Ahn, Y. M., Wi, J., Park, J. K., Higuchi, S. and Lee, N. H., "Effect of Hydrogen Peroxide Pre-treatment on the Anaerobic Digestion of Sewage Sludge", J. Korea Soc. Waste Manag, 30(8), pp. 915-922. (2013).   DOI
3 Ministry of Environment, Sewer Statistics (2015).
4 Ministry of Environment, Sewage Sludge Management Plan (2006).
5 Carrere, H., Dumas, C., Battimelli, A., Batstone, D. J., Delgenes, J. P., Steyer, J. P. and Ferrer, I., "Pretreatment Methods to Improve Sludge Anaerobic Degradability: A Review", J. Hazard. Mater., 183(1-3), pp. 1-15. (2010).   DOI
6 Appels, L., Baeyens, J., Degrve, J. and Dewil, R., "Principles and Potential of the Anaerobic Digestion of Waste-activated Sludge", Prog. Energy Combust. Sci., 34(6), pp. 755-781. (2008).   DOI
7 Hasegawa, S., Shiota, N., Katsura, K. and Akashi, A., "Solubilization of Organic Sludge by Thermophilic Aerobic Bacteria as a Pretreatment for Anaerobic Digestion", Water Sci. Technol., 41(3), pp. 163-169. (2000).
8 Su, L., Shi, X., Guo, G., Zhao, A. and Zhao, Y., "Stabilization of Sewage Sludge in the Presence of Nanoscale Zero-Valent Iron (nZVI): Abatement of Odor and Improvement of Biogas Production", J. Mater. Cycles Waste Manag., 15(4), pp. 461-468. (2013).   DOI
9 Karri, S., Sierra-Alvarez, R. and Field, J. A., "Zero Valent Iron as an Electron-Donor for Methanogenesis and Sulfate Reduction in Anaerobic Sludge", Biotechnol. Bioeng., 92(7), pp. 810-819. (2005).   DOI
10 Liu, Y., Zhang, Y. and Ni, B.-J., "Zero Valent Iron Simultaneously Enhances Methane Production and Sulfate Reduction in Anaerobic Granular Sludge Reactors", Water Res., 75, pp. 292-300. (2015).   DOI
11 Jhao, J., Wang, D., Li, X., Yang, Q., Chen, H., Zhong, Y. and Zeng, G., "Free nitrous acid serving as a pretreatment method for alkaline fermentation to enhance short-chain fatty acid production from waste activated sludge", Water Res., 78, pp. 111-120. (2015).   DOI
12 Li, H., Li, C., Liu, W. and Zou, S., "Optimized alkaline pretreatment of sludge before anaerobic digestion", Bioresour. Technol., 123, pp. 189-194. (2012).   DOI
13 Deshai, B., Bernt, L. and Rune, B., "Oxygen Effects in Anaerobic Digestion, Modeling", Identif. Control, 30(4), pp. 191-201. (2009).   DOI
14 Xiao, X., Sheng, G. P., Yang, M. and Yu, H. Q., "A Modeling Approach to Describe ZVI-Based Anaerobic System", Water Res., 47, pp. 6007-6013. (2013).   DOI
15 Kim, H.-H., Lee, H.-J., Kim, H.-E., Lee, H., Lee, B-D. and Lee, C., "Oxidative Degradation of Phenol Using Zero-Valent Iron-Based Fenton-Like Systems", J. Soil Groundw. Environ., 18(4), pp. 50-57. (2013).   DOI
16 Neyens, E., Bayens, J., Dewil, R. and Deheyder, B., "Advanced Sludge Treatment Affects Extracellular Polymeric Substances to Improve Activated Sludge Dewatering", J. Hazard. Mater., 106, pp. 83-92. (2003).
17 Lee, H. S., Lee, H. j., Kim, H. E., Kweon, J. Y., Lee, B. D. and Lee, C. H., "Oxidant Production from Corrosion of Nano-and Microparticulate Zero-Valent Iron in the Presence of Oxygen: A Comparative Study", J. Hazard. Mater., 265, pp. 201-207. (2014).   DOI
18 Keenan, C. R. and Sedlak, K. L., "Factors Affecting the Yield of Oxidants from the Reaction of Nanoparticulate Zero-Valent Iron and Oxygen", Environ. Sci. Technol., 42(4), pp. 1262-1267. (2008).   DOI
19 Feng, Y., Zhang, Y., Quan, X. and Chen, S., "Enhanced anaerobic digestion of waste activated sludge digestion by the addition of zero valent iron", Waste Res., 52, pp. 242-250. (2014).