Browse > Article
http://dx.doi.org/10.12750/JARB.36.2.76

Genetic diversity and relationship of Halla horse based on polymorphisms in microsatellites  

Jung, Ji Su (Hankyong and Genetics)
Seong, Jiyeon (Genomic Informatics Center, Hankyong National University)
Lee, Gwang Hyeon (Department of Applied Biotechnology, The Graduate School of Hankyong National University)
Kim, Yesong (Department of Applied Biotechnology, The Graduate School of Hankyong National University)
An, Je Hyun (Department of Applied Biotechnology, The Graduate School of Hankyong National University)
Yun, Ji Hye (Department of Applied Biotechnology, The Graduate School of Hankyong National University)
Kong, Hong Sik (Hankyong and Genetics)
Publication Information
Journal of Animal Reproduction and Biotechnology / v.36, no.2, 2021 , pp. 76-81 More about this Journal
Abstract
Halla horse is crossbreed between Jeju and Thoroughbred horses and is used for riding, racing and meat production. Thus, molecular genetic studies are needed to establish and preserve the industrially valuable Halla horses. This study aimed to analyses the genetic diversity and population structure through 12 microsatellite (MS) markers for Halla and putatively related 3 breeds (Jeju, Mongolian and Thoroughbred horses). On average, the number of alleles, observed heterozygosity (Hobs), expected heterozygosity (Hexp), and polymorphic information content (PIC) among all horses were 10, 0.767, 0.799, and 0.771, respectively. Neighbor-joining tree and STRUCTURE analysis showed that Halla horses were between Thoroughbred and Jeju horses, tend to more influenced by Thoroughbred horses. Therefore, these results could be considered for use as the basic genetic breed relationships resource among the horse breeds (Jeju, Mongolian, and Thoroughbred horses) related to the origins of the Halla horse.
Keywords
Halla horse; horse; genetic diversity; relationship; Microsatellite marker;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Saitou N and Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406-425.
2 Belkhir K, Borsa P, Chikhi L, Raufaste N. et al. 2003. GENETIX version 4.04.
3 Berber N, Gaouar S, Leroy G, Kdidi S, Tabet Aouel N, Saidi Mehtar N. 2014. Molecular characterization and differentiation of five horse breeds raised in Algeria using polymorphic microsatellite markers. J. Anim. Breed. Genet. 131:387-394.   DOI
4 Botstein D, White RL, Skolnick M, Davis RW. 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 32:314-331.
5 Earl DA. 2001. Structure harvester v0.6.1. http://taylor0.biology.ucla.edu/struct_harvest/ [accessed on December 20, 2010].
6 Lee JE, Shin JH, Yun YM, Lee KK, Lee H, Kweon OK, Yun YS, Suh JG, Shin NS, Seong JK. 2010. Genetic polymorphism of Jeju horses by microsatellite DNA markers in Korea. Lab. Anim. Res. 26:219-221.   DOI
7 Marklund S, Ellegren H, Eriksson S, Sandberg K, Andersson L. 1994. Parentage testing and linkage analysis in the horse using a set of highly polymorphic microsatellites. Anim. Genet. 25:19-23.   DOI
8 Nei M, Tajima F, Tateno Y. 1983. Accuracy of estimated phylogenetic trees from molecular data. II. Gene frequency data. J. Mol. Evol. 19:153-170.   DOI
9 Park SDE. 2001. The Excel microsatellite toolkit (version 3.1).
10 Seo JH, Park KD, Lee HK, Kong HS. 2016. Genetic diversity of Halla horses using microsatellite markers. J. Anim. Sci. Technol. 58:40.   DOI
11 Tantia MS, Vijh RK, Mishra B, Kumar STB, Arora R. 2006. Multilocus genotyping to study population structure in three buffalo populations of India. Asian-Aust. J. Anim. Sci. 19:1071-1078.   DOI
12 van Haeringen H, Bowling AT, Stott ML, Lenstra JA, Zwaagstra KA. 1994. A highly polymorphic horse microsatellite locus: VHL20. Anim. Genet. 25:207.
13 Evanno G, Regnaut S, Goudet J. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14:2611-2620.   DOI
14 Pritchard JK, Stephens M, Donnelly P. 2000. Inference of population structure using multilocus genotype data. Genetics 155:945-959.   DOI
15 Guerin G, Bertaud M, Amigues Y. 1994. Characterization of seven new horse microsatellites: HMS1, HMS2, HMS3, HMS5, HMS6, HMS7 and HMS8. Anim. Genet. 25:62.   DOI
16 Binns MM, Holmes NG, Holliman A, Scott AM. 1995. The identification of polymorphic microsatellite loci in the horse and their use in thoroughbred parentage testing. Br. Vet. J. 151:9-15.   DOI
17 Ellegren H, Johansson M, Sandberg K, Andersson L. 1992. Cloning of highly polymorphic microsatellites in the horse. Anim. Genet. 23:133-142.   DOI
18 Irvin Z, Giffard J, Brandon R, Breen M, Bell K. 1998. Equine dinucleotide repeat polymorphisms at loci ASB 21, 23, 25 and 37-43. Anim. Genet. 29:67.
19 Marshall TC, Slate J, Kruuk LE, Pemberton JM. 1998. Statistical confidence for likelihood-based paternity inference in natural populations. Mol. Ecol. 7:639-655.   DOI
20 Takezaki N, Nei M, Tamura K. 2010. POPTREE2: software for constructing population trees from allele frequency data and computing other population statistics with Windows interface. Mol. Biol. Evol. 27:747-752.   DOI
21 Wright DJ. 1965. General multiplicity theory. Proc. Lond. Math. Soc. s3-15:269-288.   DOI