Browse > Article
http://dx.doi.org/10.12750/JARB.36.1.2

Developmental toxicity of dimethachlor during zebrafish embryogenesis mediated by apoptosis and oxidative stress  

An, Garam (Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University)
Park, Hahyun (Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University)
Song, Gwonhwa (Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University)
Lim, Whasun (Department of Food and Nutrition, College of Science and Technology, Kookmin University)
Publication Information
Journal of Animal Reproduction and Biotechnology / v.36, no.1, 2021 , pp. 2-8 More about this Journal
Abstract
Dimethachlor is a synthetic herbicide, belonging to the chloroacetanilide group, that inhibits the undesirable growth of weeds via the suppression of very long-chain fatty acid synthesis. Although dimethachlor has been shown to run off from agricultural fields into aquatic ecosystems, the toxicity of dimethachlor on aquatic invertebrates and vertebrates is unknown. In our study, we assessed the toxicity of dimethachlor on developing zebrafish embryos by analyzing viability, hatching ability, and phenotypic changes. Embryonic viability decreased from 48 h post-fertilization (hpf) at the highest concentration of dimethachlor. Decreased hatching ratio, shortened body length, and pathological changes in the eye, heart, and yolk sac were observed at sub-lethal concentrations. Additionally, dimethachlor increased the number of apoptotic cells and level of reactive oxygen species 120 hpf. Our results indicate that dimethachlor may act as an anti-developmental toxicant when accumulated in an aquatic environment.
Keywords
agriculture; apoptosis; embryonic structures; reactive oxygen species; zebrafish;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Razaghi B, Steele SL, Prykhozhij SV, Stoyek MR, Hill JA, Cooper MD, McDonald L, Lin W, Daugaard M, Crapoulet N, Chacko S, Lewis SM, Scott IC, Sorensen PHB, Berman JN. 2018. hace1 Influences zebrafish cardiac development via ROS-dependent mechanisms. Dev. Dyn. 247:289-303.   DOI
2 Chahardehi AM, Arsad H, Lim V. 2020. Zebrafish as a successful animal model for screening toxicity of medicinal plants. Plants (Basel) 9:1345.   DOI
3 Chakraborty C, Sharma AR, Sharma G, Lee SS. 2016. Zebrafish: a complete animal model to enumerate the nanoparticle toxicity. J. Nanobiotechnology 14:65.   DOI
4 Liang J, Jin W, Li H, Liu H, Huang Y, Shan X, Li C, Shan L, Efferth T. 2016. In vivo cardiotoxicity induced by sodium aescinate in zebrafish larvae. Molecules 21:190.   DOI
5 Zakaria ZZ, Benslimane FM, Nasrallah GK, Shurbaji S, Younes NN, Mraiche F, Da'as SI, Yalcin HC. 2018. Using zebrafish for investigating the molecular mechanisms of drug-induced cardiotoxicity. Biomed Res. Int. 2018:1642684.   DOI
6 Eum J, Kwak J, Kim HJ, Ki S, Lee K, Raslan AA, Park OK, Chowdhury MA, Her S, Kee Y, Kwon SH, Hwang BJ. 2016. 3D visualization of developmental toxicity of 2,4,6-trinitrotoluene in zebrafish embryogenesis using light-sheet microscopy. Int. J. Mol. Sci. 17:1925.   DOI
7 Junghans M, Backhaus T, Faust M, Scholze M, Grimme LH. 2003. Predictability of combined effects of eight chloroacetanilide herbicides on algal reproduction. Pest Manag. Sci. 59:1101-1110.   DOI
8 Lewis KA, Tzilivakis J, Warner DJ, Green A. 2016. An international database for pesticide risk assessments and management. Hum. Ecol. Risk Assess. 22:1050-1064.   DOI
9 McCollum CW, Ducharme NA, Bondesson M, Gustafsson JA. 2011. Developmental toxicity screening in zebrafish. Birth Defects Res. C Embryo Today 93:67-114.   DOI
10 Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF. 1995. tages of embryonic development of the zebrafish. Dev. Dyn. 203:253-310.   DOI
11 Malicki J, Neuhauss SC, Schier AF, Solnica-Krezel L, Stemple DL, Stainier DY, Abdelilah S, Zwartkruis F, Rangini Z, Driever W. 1996. Mutations affecting development of the zebrafish retina. Development 123:263-273.   DOI
12 Park S, Song G, Lim W. 2020. Anti-developmental effects of imazosulfuron on zebrafish embryos during development. J. Anim. Reprod. Biotechnol. 35:28-34.   DOI
13 Cassagne C, Lessire R, Bessoule JJ, Moreau P, Creach A, Schneider F, Sturbois B. 1994. Biosynthesis of very long chain fatty acids in higher plants. Prog. Lipid Res. 33:55-69.   DOI
14 Ren F, Ji C, Huang Y, Aniagu S, Jiang Y, Chen T. 2020. AHRmediated ROS production contributes to the cardiac developmental toxicity of PM2.5 in zebrafish embryos. Sci. Total Environ. 719:135097.   DOI
15 von Wettstein-Knowles PM. 1993. Waxes, cutin and suberin. In: Moore TS (Ed.), Lipid Metabolism in Plants. CRC Press, Boca Raton, pp. 127-166.
16 Sant KE and Timme-Laragy AR. 2018. Zebrafish as a model for toxicological perturbation of yolk and nutrition in the early embryo. Curr. Environ. Health Rep. 5:125-133.   DOI
17 Tu W, Niu L, Liu W, Xu C. 2013. Embryonic exposure to butachlor in zebrafish (Danio rerio): endocrine disruption, developmental toxicity and immunotoxicity. Ecotoxicol. Environ. Saf. 89:189-195.   DOI
18 Yang X, Guschina IA, Hurst S, Wood S, Langford M, Hawkes T, Harwood JL. 2010. The action of herbicides on fatty acid biosynthesis and elongation in barley and cucumber. Pest Manag. Sci. 66:794-800.   DOI
19 Battaglin WA, Furlong ET, Burkhardt MR, Peter CJ. 2000. Occurrence of sulfonylurea, sulfonamide, imidazolinone, and other herbicides in rivers, reservoirs and ground water in the Midwestern United States, 1998. Sci. Total Environ. 248:123-133.   DOI
20 Capriello T, Grimaldi MC, Cofone R, D'Aniello S, Ferrandino I. 2019. Effects of aluminium and cadmium on hatching and swimming ability in developing zebrafish. Chemosphere 222:243-249.   DOI
21 Huang L, Wang C, Zhang Y, Wu M, Zuo Z. 2013. Phenanthrene causes ocular developmental toxicity in zebrafish embryos and the possible mechanisms involved. J. Hazard. Mater. 261:172-180.   DOI
22 Chen X, Dong Q, Chen Y, Zhang Z, Huang C, Zhu Y, Zhang Y. 2017. Effects of Dechlorane Plus exposure on axonal growth, musculature and motor behavior in embryo-larval zebrafish. Environ. Pollut. 224:7-15.   DOI
23 Cole LK and Ross LS. 2001. Apoptosis in the developing zebrafish embryo. Dev. Biol. 240:123-142.   DOI
24 He JH, Gao JM, Huang CJ, Li CQ. 2014. Zebrafish models for assessing developmental and reproductive toxicity. Neurotoxicol. Teratol. 42:35-42.   DOI
25 Kim J, Kim CY, Oh H, Ryu B, Kim U, Lee JM, Jung CR, Park JH. 2019. Trimethyltin chloride induces reactive oxygen speciesmediated apoptosis in retinal cells during zebrafish eye development. Sci. Total Environ. 653:36-44.   DOI