Browse > Article
http://dx.doi.org/10.5187/jast.2022.e79

Study on the rumen fermentation, growth performance and carcass characteristics according to the supplementation of lupin flake in Hanwoo steers  

Kyung-Hwan, Um (Department of Animal Science, Kangwon National University)
Byung-Ki, Park (Department of Animal Science, Kangwon National University)
Publication Information
Journal of Animal Science and Technology / v.64, no.6, 2022 , pp. 1077-1091 More about this Journal
Abstract
This study was conducted to determine the rumen fermentation dynamics of lupin flakes and elucidate the effects of lupin flake supplementation on the growth performance, blood metabolites, and carcass characteristics of Hanwoo steers. In vitro and in situ trials of lupin grains and lupin flakes were conducted using three Hanwoo cows with rumen fistulas. The feeding trial included 40 early-fattening Hanwoo steers randomly divided into four groups: control, T1, T2, and T3. Their formula feed contained 0%, 3%, 6%, and 9% lupin flakes, respectively. In vitro rumen pH and ammonia concentrations were lower in the lupin flake group than in the lupin grain group after 6 and 24 h of incubation, respectively (p < 0.05). Concentrations of propionate, butyrate, and total volatile fatty acids were higher in the lupin flake group than in the lupin grain group after 12 h of incubation (p < 0.05), as was the crude protein disappearance rate at 9 and 12 h of rumen fermentation (p < 0.05). Supplementation with lupin flakes did not affect the average daily gain. Compared to that in the control group, dry matter intake was lower in the lupin flake-supplemented groups (p < 0.05); the feed conversion ratio was lower in T2 and T3 (p < 0.05); and plasma total protein concentration in 29-month-old steers was lower in T1 and T3 (p < 0.05). Plasma triglyceride concentration was lower in the lupin flake-supplemented groups than in the control group (p < 0.05). The incidence rate of yield grade A was higher in T1 and T2 than in the control group; the incidence rate of meat quality 1+ grade or higher was highest in T2. The carcass auction price was higher in T2 than in the other groups. Overall, compared to whole lupin grains, lupin flakes seem to more substantially affect rumen ammonia concentrations and crude protein disappearance rate. Additionally, we suggest that supplementation with 6% lupin flake formula feed exerts positive effects on the feed conversion ratio, yield grade, and quality grade of Hanwoo steers.
Keywords
Lupin flake; Rumen fermentation characteristics; Hanwoo steers; Growth performance; Carcass characteristics;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Keles G, Demirci U. The effect of homofermentative and heterofermentative lactic acid bacteria on conservation characteristics of baled triticale-Hungarian vetch silage and lamb performance. Anim Feed Sci Technol. 2011;164:21-8. https://doi.org/10.1016/j.anifeedsci.2010.11.017   DOI
2 Nishino N, Wada H, Yoshida M, Shiota H. Microbial counts, fermentation products, and aerobic stability of whole crop corn and a total mixed ration ensiled with and without inoculation of Lactobacillus casei or Lactobacillus buchneri. J Dairy Sci. 2004;87:2563-70. https://doi.org/10.3168/jds.S0022-0302(04)73381-0   DOI
3 Bauman DE, Davis CL, Bucholtz HF. Propionate production in the rumen of cows fed either a control or high-grain, low-fiber diet. J Dairy Sci. 1971;54:1282-7. https://doi.org/10.3168/ jds.S0022-0302(71)86021-6   DOI
4 Zaman MS, McNiven MA, Grimmelt B, MacLeod JA. Effects of roasting of lupins (Lupinus albus) and high protein variety of soybeans (AC Proteus) on chemical composition and in situ dry matter and nitrogen disappearance in dairy cows. Anim Feed Sci Technol. 1995;51:329-35. https://doi.org/10.1016/0377-8401(94)00683-Z   DOI
5 Vicenti A, Toteda F, Di Turi L, Cocca C, Perrucci M, Melodia L, et al. Use of sweet lupin (Lupinus albus L. var. Multitalia) in feeding for Podolian young bulls and influence on productive performances and meat quality traits. Meat Sci. 2009;82:247-51. https://doi. org/10.1016/j.meatsci.2009.01.018   DOI
6 Sami AS, Schuster M, Schwarz FJ. Performance, carcass characteristics and chemical composition of beef affected by lupine seed, rapeseed meal and soybean meal. J Anim Physiol Anim Nutr. 2010;94:465-73. https://doi.org/10.1111/j.1439-0396.2009.00930.x   DOI
7 Kwak BO, Kim C. The effect of different flaked lupin seed inclusion levels on the growth of growing Korean native bulls. Asian-Australas J Anim Sci. 2001;14:1129-32. https://doi. org/10.5713/ajas.2001.1129    DOI
8 Ahn JS, Son GH, Kim MJ, Choi CS, Lee CW, Park JK, et al. Effect of total digestible nutrients level of concentrates on growth performance, carcass characteristics, and meat composition of Korean Hanwoo steers. Food Sci Anim Resour. 2019;39:388-401. https://doi.org/10.5851/ kosfa.2019.e32   DOI
9 Tracy VA, Barton BA, Anderson GW, Williams MS. Comparison of sweet white lupin seeds with soybean oil meal as a protein supplement for sheep. J Anim Sci. 1988;66:499.
10 Bayourthe C, Moncoulon R, Enjalbert F. Effect of extruded lupin seeds as a protein source on lactational performance of dairy cows. Anim Feed Sci Technol. 1998;72:121-31. https://doi. org/10.1016/S0377-8401(97)00168-5   DOI
11 Ephrem N, Tegegne F, Mekuriaw Y, Yeheyis L. Nutrient intake, digestibility and growth performance of Washera lambs supplemented with graded levels of sweet blue lupin (Lupinus angustifolius L.) seed. Small Rumin Res. 2015;130:101-7. https://doi.org/10.1016/j.smallrumres.2015.07.019   DOI
12 Robinson PH, McNiven MA. Nutritive value of raw and roasted sweet white lupins (Lupinus albus) for lactating dairy cows. Anim Feed Sci Technol. 1993;43:275-90. https://doi. org/10.1016/0377-8401(93)90083-V   DOI
13 Prandini A, Morlacchini M, Moschini M, Fusconi G, Masoero F, Piva G. Raw and extruded pea (Pisum sativum) and lupin (Lupinus albus var. Multitalia) seeds as protein sources in weaned piglets' diets: effect on growth rate and blood parameters. Ital J Anim Sci. 2005;4:385-94. https://doi.org/10.4081/ijas.2005.385   DOI
14 Steiger M, Senn M, Altreuther G, Werling D, Sutter F, Kreuzer M, et al. Effect of a prolonged low-dose lipopolysaccharide infusion on feed intake and metabolism in heifers. J Anim Sci. 1999;77:2523-32. https://doi.org/10.2527/1999.7792523x   DOI
15 Wathes DC, Cheng Z, Bourne N, Taylor VJ, Coffey MP, Brotherstone S. Differences between primiparous and multiparous dairy cows in the inter-relationships between metabolic traits, milk yield and body condition score in the periparturient period. Domest Anim Endocrinol. 2007;33:203-25. https://doi.org/10.1016/j.domaniend.2006.05.004   DOI
16 Sun F, Cao Y, Cai C, Li S, Yu C, Yao J. Regulation of nutritional metabolism in transition dairy cows: energy homeostasis and health in response to post-ruminal choline and methionine. PLOS ONE. 2016;11:e0160659. https://doi.org/10.1371/journal.pone.0160659   DOI
17 Lestingi A, Facciolongo AM, Caputi Jambrenghi A, Ragni M, Toteda F. The use of peas and sweet lupin seeds alone or in association for fattening lambs: effects on performance, blood parameters and meat quality. Small Rumin Res. 2016;143:15-23. https://doi.org/10.1016/ j.smallrumres.2016.08.006   DOI
18 Lestingi A, Toteda F, Vicenti A, De Marzo D, Facciolongo AM. The use of faba bean and sweet lupin seeds alone or in combination for growing lambs. 1. Effects on growth performance, carcass traits, and blood parameters. Pak J Zool. 2015;47:989-96.
19 Spielmann J, Shukla A, Brandsch C, Hirche F, Stangl GI, Eder K. Dietary lupin protein lowers triglyceride concentrations in liver and plasma in rats by reducing hepatic gene expression of sterol regulatory element-binding protein-1c. Ann Nutr Metab. 2007;51:387-92. https://doi. org/10.1159/000107720   DOI
20 Ndlovu T, Chimonyo M, Okoh AI, Muchenje V, Dzama K, Raats JG. Assessing the nutritional status of beef cattle: current practices and future prospects. Afr J Biotechnol. 2007;6:2727-34. https://doi.org/10.5897/AJB2007.000-2436   DOI
21 Lovati MR, Manzoni C, Castiglioni S, Parolari A, Magni C, Duranti M. Lupin seed γ-conglutin lowers blood glucose in hyperglycaemic rats and increases glucose consumption of HepG2 cells. Br J Nutr. 2012;107:67-73. https://doi.org/10.1017/S0007114511002601   DOI
22 Soetan KO, Olaiya CO, Oyewole OE. The importance of mineral elements for humans, domestic animals and plants: a review. Afr J Food Sci. 2010;4:200-22.
23 King RH. Lupin-seed meal (Lupinus albus cv. Hamburg) as a source of protein for growing pigs. Anim Feed Sci Technol. 1981;6:285-96. https://doi.org/10.1016/0377-8401(81)90007-9   DOI
24 Dawson LER. The effect of inclusion of lupins/triticale whole crop silage in the diet of winter finishing beef cattle on their performance and meat quality at two levels of concentrates. Anim Feed Sci Technol. 2012;171:75-84. https://doi.org/10.1016/j.anifeedsci.2011.09.011    DOI
25 Mane SP, Johnson SK, Duranti M, Pareek VK, Utikar RP. Lupin seed γ-conglutin: extraction and purification methods: a review. Trends Food Sci Technol. 2018;73:1-11. https://doi. org/10.1016/j.tifs.2017.12.008   DOI
26 Jeon S, Lee M, Seo J, Kim JH, Kam DK, Seo S. High-level dietary crude protein decreased backfat thickness and increased carcass yield score in finishing Hanwoo beef cattle (Bos taurus coreanae). J Anim Sci Technol. 2021;63:1064-75. https://doi.org/10.5187/jast.2021.e96   DOI
27 Chae YW, Yun JW, Kim SS. Economic analysis on the technology to shorten the raising term for Korean cattle-based on the results of empirical farm that manufactures and feeds his own TMR feed. J Korea Acad Ind Coop Soc. 2020;21:833-42. https://doi.org/10.5762/ KAIS.2020.21.11.833   DOI
28 Chung KY, Lee SH, Cho SH, Kwon EG, Lee JH. Current situation and future prospects for beef production in South Korea: a review. Asian-Australas J Anim Sci. 2018;31:951-60. https:// doi.org/10.5713/ajas.18.0187   DOI
29 Bertoglio JC, Calvo MA, Hancke JL, Burgos RA, Riva A, Morazzoni P, et al. Hypoglycemic effect of lupin seed γ-conglutin in experimental animals and healthy human subjects. Fitoterapia. 2011;82:933-8. https://doi.org/10.1016/j.fitote.2011.05.007   DOI
30 MAFRA [Ministry of Agriculture, Food and Rural Affair]. Standards and specifications of feed, etc. in accordance with the feed management method. Sejong: MAFRA; 2021.
31 Sujak A, Kotlarz A, Strobel W. Compositional and nutritional evaluation of several lupin seeds. Food Chem. 2006;98:711-9. https://doi.org/10.1016/j.foodchem.2005.06.036   DOI
32 Boschin G, Arnoldi A. Legumes are valuable sources of tocopherols. Food Chem. 2011;127:1199-203. https://doi.org/10.1016/j.foodchem.2011.01.124   DOI
33 Wang S, Errington S, Yap HH. Studies on carotenoids from lupin seeds. In: 'Lupins for Health and Wealth' Proceedings of the 12th International Lupin Conference; 2008; Canterbury, New Zealand.
34 Elbandy M, Rho JR. New flavone-di-C-glycosides from the seeds of Egyptian lupin (Lupinus termis). Phytochem Lett. 2014;9:127-31. https://doi.org/10.1016/j.phytol.2014.05.006   DOI
35 Kocher A, Choct M, Hughes RJ, Broz J. Effect of food enzymes on utilisation of lupin carbohydrates by broilers. Br Poult Sci. 2000;41:75-82. https://doi.org/10.1080/000 71660086448   DOI
36 Brenes A, Marquardt RR, Guenter W, Viveros A. Effect of enzyme addition on the performance and gastrointestinal tract size of chicks fed lupin seed and their fractions. Poult Sci. 2002;81:670-8. https://doi.org/10.1093/ps/81.5.670   DOI
37 Kim JC, Pluske JR, Mullan BP. Nutritive value of yellow lupins (Lupinus luteus L.) for weaner pigs. Aust J Exp Agric. 2008;48:1225-31. https://doi.org/10.1071/EA07288   DOI
38 Petterson DS. The use of lupins in feeding systems - review -. Asian-Australas J Anim Sci. 2000;13:861-82. https://doi.org/10.5713/ajas.2000.861   DOI
39 van Barneveld RJ. Understanding the nutritional chemistry of lupin (Lupinus spp.) seed to improve livestock production efficiency. Nutr Res Rev. 1999;12:203-30. https://doi. org/10.1079/095442299108728938   DOI
40 White CL, Staines VE, Staines MH. A review of the nutritional value of lupins for dairy cows. Aust J Agric Res. 2007;58:185-202. https://doi.org/10.1071/AR06109   DOI
41 Park HO. Nutritional and feed value of lupine seeds. Feed. 2005;4:55-63.
42 Guemes-Vera N, Martinez-Herrera J, Hernandez-Chavez JF, Yanez-Fernandez J, Totosaus A. Comparison of chemical composition and protein digestibility, carotenoids, tanins and alkaloids content of wild lupinus varieties flour. Pak J Nutr. 2012;11:774-80. https://doi.org/10.3923/ pjn.2012.774.780   DOI
43 Aufrere J, Graviou D, Melcion JP, Demarquilly C. Degradation in the rumen of lupin (Lupinus albus L.) and pea (Pisum sativum L.) seed proteins: effect of heat treatment. Anim Feed Sci Technol. 2001;92:215-36. https://doi.org/10.1016/S0377-8401(01)00262-0   DOI
44 Nowak W, Wylegala S. The effect of rapeseed oil on the ruminal degradability and intestinal protein digestibility of rapeseed meal, soyabean and lupin seed. J Anim Feed Sci. 2005;14:295-8. https://doi.org/10.22358/jafs/70543/2005   DOI
45 Jeong J, Seong NI, Hwang IK, Lee SB, Yu MS, Nam IS, et al. Effects of level of CP and TDN in the concentrate supplement on growth performances and carcass characteristics in Hanwoo steers during final fattening period. J Anim Sci Technol. 2010;52:305-12. https://doi. org/10.5187/JAST.2010.52.4.305   DOI
46 KIAPQE [Korea Institute for Animal Products Quality Evaluation]. Animal products grading statistical yearbook [Internet]. KIAPQE. 2019 [cited 2020 Dec 29]. https://www.law.go.kr/%E D%96%89%EC%A0%95%EA%B7%9C%EC%B9%99/%EC%B6%95%EC%82%B0%EB% AC%BC%20%EB%93%B1%EA%B8%89%ED%8C%90%EC%A0%95%20%EC%84%B8% EB%B6%80%EA%B8%B0%EC%A4%80
47 Nalle CL, Ravindran V, Ravindran G. Nutritional value of narrow-leafed lupin (Lupinus angustifolius) for broilers. Br Poult Sci. 2011;52:775-81. https://doi.org/10.1080/00071668.20 11.639343   DOI
48 McDougall EI. Studies on ruminant saliva. 1. The composition and output of sheep's saliva. Biochem J. 1948;43:99-109. https://doi.org/10.1042/bj0430099   DOI
49 Chaney AL, Marbach EP. Modified reagents for determination of urea and ammonia. Clin Chem. 1962;8:130-2. https://doi.org/10.1093/clinchem/8.2.130   DOI
50 Duncan DB. Multiple range and multiple F tests. Biometrics. 1955;11:1-42. https://doi.org/10.2307/3001478   DOI
51 Chuck-Hernandez C, Perez-Carrillo E, Serna-Saldivar SO. Production of bioethanol from steam-flaked sorghum and maize. J Cereal Sci. 2009;50:131-7. https://doi.org/10.1016/ j.jcs.2009.04.004   DOI
52 Cooper R, Milton T, Klopfenstein TJ, Clark D. Economic evaluation of corn processing for finishing cattle. In: Nebraska beef cattle reports. Lincoln, NE: 2001. p. 51-4.
53 Cho YB, Kim EJ, Lee HG, Song BC, Maeng WJ. A study on the fermentation characteristics and on fermentation control of processed grain and meal in the rumen: II. a study on the fermentation control of processed corn, lupin seed and soybean in the rumen. Korean J Anim Nutr Feedstuffs. 1994;18:292-6.