Effects of dietary Acremonium terricola culture supplementation on the quality, conventional characteristics, and flavor substances of Hortobagy goose meat |
Yawen, Guo
(College of Animal Science and Technology, Yangzhou University)
Jinyuan, Chen (College of Animal Science and Technology, Yangzhou University) Shuyu, Liu (College of Animal Science and Technology, Yangzhou University) Yali, Zhu (College of Animal Science and Technology, Yangzhou University) Pengfei, Gao (College of Animal Science and Technology, Yangzhou University) Kaizhou, Xie (College of Animal Science and Technology, Yangzhou University) |
1 | Chen J, Guo Y, Lu Y, He Z, Zhu Y, Liu S, et al. Effects of Acremonium terricola culture on the growth, slaughter yield, immune organ, serum biochemical indexes, and antioxidant indexes of geese. Animals. 2022;12:1164. https://doi.org/10.3390/ani12091164 DOI |
2 | Li Y, Wang Y, Ding X, Zhang Y, Xue S, Lin C, et al. Effects of Acremonium terricola culture on growth performance, antioxidant status and immune functions in weaned calves. Livest Sci. 2016;193:66-70. https://doi.org/10.1016/j.livsci.2016.09.009 DOI |
3 | Li Y, Wang YZ, Zhang GN, Zhang XY, Lin C, Li XX, et al. Effects of Acremonium terricola culture supplementation on apparent digestibility, rumen fermentation, and blood parameters in dairy cows. Anim Feed Sci Technol. 2017;230:13-22. https://doi.org/10.1016/j.anifeedsci.2017.05.015 DOI |
4 | Li Y, Sun YK, Li X, Zhang GN, Xin HS, Xu HJ, et al. Effects of Acremonium terricola culture on performance, milk composition, rumen fermentation and immune functions in dairy cows. Anim Feed Sci Technol. 2018;240:40-51. https://doi.org/10.1016/j.anifeedsci.2018.03.015 DOI |
5 | Wang YZ, Li Y, Xu QB, Zhang XY, Zhang GN, Zhang YG, et al. Effects of Acremonium terricola culture on production performance, antioxidant status, and blood biochemistry in transition dairy cows. Anim Feed Sci Technol. 2019;256:114261. https://doi.org/10.1016/j.anifeedsci.2019.114261 DOI |
6 | Li Y, Jiang X, Xu H, Lv J, Zhang G, Dou X, et al. Acremonium terricola culture plays antiinflammatory and antioxidant roles by modulating MAPK signaling pathways in rats with lipopolysaccharide-induced mastitis. Food Nutr Res. 2020;64:3649. https://doi.org/10.29219/fnr.v64.3649 DOI |
7 | Gong X, Zhang J, An K, Wang L, Yang W, Liu Y, et al. Effects of Acremonium terricola culture on growth performance, organ index and serum antioxidant capacity of Beijing fatty chicken. Chin J Vet Med. 2021;57:31-5. |
8 | Yue K, Ye M, Zhou Z, Sun W, Lin X. The genus Cordyceps: a chemical and pharmacological review. J Pharm Pharmacol. 2013;65:474-93. https://doi.org/10.1111/j.2042-7158.2012.01601.x DOI |
9 | Tuli HS, Sandhu SS, Sharma AK. Pharmacological and therapeutic potential of Cordyceps with special reference to Cordycepin. 3 Biotech. 2014;4:1-12. https://doi.org/10.1007/s13205-013-0121-9 DOI |
10 | Rottman F, Guarino AJ. The inhibition of phosphoribosyl-pyrophosphate amidotransferase activity by cordycepin monophosphate. Biochim Biophys Acta (BBA) Specialized Sect Enzymol Subj. 1964;89:465-72. https://doi.org/10.1016/0926-6569(64)90072-0 DOI |
11 | Yuan JP, Wang JH, Liu X, Kuang HC, Zhao SY. Simultaneous determination of free ergosterol and ergosteryl esters in Cordyceps sinensis by HPLC. Food Chem. 2007;105:1755-9. https://doi.org/10.1016/j.foodchem.2007.04.070 DOI |
12 | Hur H. Chemical ingredients of Cordyceps militaris. Mycobiology. 2008;36:233-5. https://doi.org/10.4489/MYCO.2008.36.4.233 DOI |
13 | Weng K, Huo W, Gu T, Bao Q, Hou L, Zhang Y, et al. Effects of marketable ages on meat quality through fiber characteristics in the goose. Poult Sci. 2021;100:728-37. https://doi.org/10.1016/j.psj.2020.11.053 DOI |
14 | National Research Council. Nutrient requirements of poultry. 9th rev. ed. Washington, DC: National Academies Press; 1994. |
15 | WHO [World Health Organization]. Protein and amino acid requirements in human nutrition: report of a joint FAO/WHO/UNU expert consultation. Geneva: WHO; 2007. Report No.: 935. |
16 | Li M, Zi X, Tang J, Xu T, Gu L, Zhou H. Effects of cassava foliage on feed digestion, meat quality, and antioxidative status of geese. Poult Sci. 2020;99:423-9. https://doi.org/10.3382/ps/pez522 DOI |
17 | Yu J, Yang HM, Wan XL, Chen YJ, Yang Z, Liu WF, et al. Effects of cottonseed meal on slaughter performance, meat quality, and meat chemical composition in Jiangnan White goslings. Poult Sci. 2020;99:207-13. https://doi.org/10.3382/ps/pez451 DOI |
18 | Liu BY, Wang ZY, Yang HM, Wang JM, Xu D, Zhang R, et al. Influence of rearing system on growth performance, carcass traits, and meat quality of Yangzhou geese. Poult Sci. 2011;90:653-9. https://doi.org/10.3382/ps.2009-00591 DOI |
19 | Sibut V, Le Bihan-Duval E, Tesseraud S, Godet E, Bordeau T, Cailleau-Audouin E, et al. Adenosine monophosphate-activated protein kinase involved in variations of muscle glycogen and breast meat quality between lean and fat chickens. J Anim Sci. 2008;86:2888-96. https://doi.org/10.2527/jas.2008-1062 DOI |
20 | Damaziak K, Stelmasiak A, Riedel J, Zdanowska-Sasiadek Z, Buclaw M, Gozdowski D, et al. Sensory evaluation of poultry meat: a comparative survey of results from normal sighted and blind people. PLOS ONE. 2019;14:e0210722. https://doi.org/10.1371/journal.pone.0210722 DOI |
21 | Guo B, Li D, Zhou B, Jiang Y, Bai H, Zhang Y, et al. Research note: effect of diet with different proportions of ryegrass on breast meat quality of broiler geese. Poult Sci. 2020;99:2500-7. https://doi.org/10.1016/j.psj.2019.10.039 DOI |
22 | Uhlirova L, Tumova E, Chodova D, Vlckova J, Ketta M, Volek Z, et al. The effect of age, genotype and sex on carcass traits, meat quality and sensory attributes of geese. Asian-Australas J Anim Sci. 2018;31:421-8. https://doi.org/10.5713/ajas.17.0197 DOI |
23 | Cui LL, Wang JF, Xie KZ, Li AH, Geng TY, Sun LR, et al. Analysis of meat flavor compounds in pedigree and two-strain Yangzhou geese. Poult Sci. 2015;94:2266-71. https://doi.org/10.3382/ps/pev179 DOI |
24 | Arya SS, Parihar DB. Changes in free nucleotides, nucleosides and bases during thermal processing of goat and sheep meats. Part I. effect of temperature. Food/Nahrung. 1979;23:1-7. https://doi.org/10.1002/food.19790230102 DOI |
25 | Miao Z, Guo L, Liu Y, Zhao W, Zhang J. Effects of dietary supplementation of chitosan on carcass composition and meat quality in growing Huoyan geese. Poult Sci. 2020;99:3079-85. https://doi.org/10.1016/j.psj.2020.03.025 DOI |
26 | Ardo Y. Flavour formation by amino acid catabolism. Biotechnol Adv. 2006;24:238-42. https://doi.org/10.1016/j.biotechadv.2005.11.005 DOI |
27 | Eggum B. Comments on report of a joint FAO/WHO expert consultation on protein quality evaluation, Rome 1990. Z Ernahrungswiss. 1991;30:81-8. https://doi.org/10.1007/bf01610063 DOI |
28 | Katan MB. Nutritional interventions: the evidence. Proc Nutr Soc. 2000;59:417-8. https://doi.org/10.1017/s0029665100000483 DOI |
29 | MacRae J, O'Reilly L, Morgan P. Desirable characteristics of animal products from a human health perspective. Livest Prod Sci. 2005;94:95-103. https://doi.org/10.1016/j.livprodsci.2004.11.030 DOI |
30 | Geldenhuys G, Hoffman LC, Muller N. The fatty acid, amino acid, and mineral composition of Egyptian goose meat as affected by season, gender, and portion. Poult Sci. 2015;94:1075-87. https://doi.org/10.3382/ps/pev083 DOI |