Browse > Article
http://dx.doi.org/10.5187/jast.2022.e13

Differential expression and localization of tight junction proteins in the goat epididymis  

Sung Woo, Kim (Animal Genetic Resource Research Center, National Institute of Animal Science, Rural Development Administration)
Yu-Da, Jeong (Department of Animal Resources Science, Kongju National University)
Ga-Yeong, Lee (Department of Animal Resources Science, Kongju National University)
Jinwook, Lee (Animal Genetic Resource Research Center, National Institute of Animal Science, Rural Development Administration)
Jae-Yeung, Lee (Animal Genetic Resource Research Center, National Institute of Animal Science, Rural Development Administration)
Chan-Lan, Kim (Animal Genetic Resource Research Center, National Institute of Animal Science, Rural Development Administration)
Yeoung-Gyu, Ko (Animal Genetic Resource Research Center, National Institute of Animal Science, Rural Development Administration)
Sung-Soo, Lee (Animal Genetic Resource Research Center, National Institute of Animal Science, Rural Development Administration)
Bongki, Kim (Department of Animal Resources Science, Kongju National University)
Publication Information
Journal of Animal Science and Technology / v.64, no.3, 2022 , pp. 500-514 More about this Journal
Abstract
The blood-epididymis barrier (BEB) forms a unique microenvironment that is crucial for the maturation, protection, transport, and storage of spermatozoa in the epididymis. To characterize the function of tight junctions (TJs), which are constitutive components of the BEB, we determined the expression and localization of TJ proteins such as zonula occludens (ZO)-1, 2, and 3, occludin, and claudin3 (Cldn3) during postnatal development in the goat epididymis. To assess the expression patterns of TJ proteins in immature (3 months of age) and mature (14 months of age) goat epididymides, two different experimental methods were used including immunofluorescence labeling and western blotting. We show that, ZO-1, 2, and 3, and occludin, were strictly expressed and localized to the TJs of the goat epididymis, whereas Cldn3 was present in basolateral membranes as well as TJs. All TJ proteins examined were more highly expressed in the immature epididymis compared to levels in mature tissue. In conclusion, our study indicates that at least five TJ proteins, namely ZO-1, ZO-2, ZO-3, occludin, and Cldn3, are present in TJs, and the expression strength and pattern of TJ proteins tend to be age dependent in the goat epididymis. Together, these data suggest that the distinct expression patterns of TJ proteins are essential for regulating components of the luminal contents in the epididymal epithelium and for forming adequate luminal conditions that are necessary for the maturation, protection, transport, and storage of spermatozoa in the goat epididymis.
Keywords
Blood-epididymis barrier; Tight junctions; Zonula occludens; Claudin; Occludin;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Toyama Y, Ohkawa M, Oku R, Maekawa M, Yuasa S. Neonatally administered diethylstilbestrol retards the development of the blood-testis barrier in the rat. J Androl. 2001;22:413-23. https://doi.org/10.1002/j.1939-4640.2001.tb02197.x   DOI
2 Li MWM, Mruk DD, Lee WM, Cheng CY. Disruption of the blood-testis barrier integrity by bisphenol A in vitro: is this a suitable model for studying blood-testis barrier dynamics? Int J Biochem Cell Biol. 2009;41:2302-14. https://doi.org/10.1016/j.biocel.2009.05.016    DOI
3 Breton S, Ruan YC, Park YJ, Kim B. Regulation of epithelial function, differentiation, and remodeling in the epididymis. Asian J Androl. 2016;18:3-9. https://doi.org/10.4103/1008-682X.165946   DOI
4 Shum WWC, Ruan YC, Da Silva N, Breton S. Establishment of cell-cell cross talk in the epididymis: control of luminal acidification. J Androl. 2011;32:576-86. https://doi.org/10.2164/jandrol.111.012971   DOI
5 Shum WWC, Da Silva N, Brown D, Breton S. Regulation of luminal acidification in the male reproductive tract via cell-cell crosstalk. J Exp Biol. 2009;212:1753-61. https://doi.org/10.1242/jeb.027284   DOI
6 Cyr DG, Gregory M, Dube E, Dufresne J, Chan PTK, Hermo L. Orchestration of occludins, claudins, catenins and cadherins as players involved in maintenance of the blood-epididymal barrier in animals and humans. Asian J Androl. 2007;9:463-75. https://doi.org/10.1111/j.1745-7262.2007.00308.x   DOI
7 Mital P, Hinton BT, Dufour JM. The blood-testis and blood-epididymis barriers are more than just their tight junctions. Biol Reprod. 2011;84:851-8. https://doi.org/10.1095/biolreprod.110.087452   DOI
8 Franca LR, Auharek SA, Hess RA, Dufour JM, Hinton BT. Blood-tissue barriers: morphofunctional and immunological aspects of the blood-testis and blood-epididymal barriers. In: Cheng CY editor. Biology and regulation of blood-tissue barriers. New York, NY: Springer Science Business Media; 2013. pp. 237-59.
9 Dym M, Fawcett DW. The blood-testis barrier in the rat and the physiological compartmentation of the seminiferous epithelium. Biol Reprod. 1970;3:308-26. https://doi.org/10.1093/biolreprod/3.3.308   DOI
10 Fawcett DW, Leak LV, Heidger PM Jr. Electron microscopic observations on the structural components of the blood-testis barrier. J Reprod Fertil Suppl. 1970;10:105-22.
11 Hoffer AP, Hinton BT. Morphological evidence for a blood-epididymis barrier and the effects of gossypol on its integrity. Biol Reprod. 1984;30:991-1004. https://doi.org/10.1095/biolreprod30.4.991   DOI
12 Agarwal A, Hoffer AP. Ultrastructural studies on the development of the blood-epididymis barrier in immature rats. J Androl. 1989;10:425-31. https://doi.org/10.1002/j.1939-4640.1989.tb00132.x   DOI
13 Setchell BP. The movement of fluids and substances in the testis. Aust J Biol Sci. 1986;39:193-207. https://doi.org/10.1071/BI9860193   DOI
14 Banks WA, McLay RN, Kastin AJ, Sarmiento U, Scully S. Passage of leptin across the blood-testis barrier. Am J Physiol. 1999;276:E1099-104. https://doi.org/10.1152/ajpendo.1999.276.6.E1099   DOI
15 Meng J, Holdcraft RW, Shima JE, Griswold MD, Braun RE. Androgens regulate the permeability of the blood-testis barrier. Proc Natl Acad Sci USA. 2005;102:16696-700. https://doi.org/10.1073/pnas.0506084102   DOI
16 Stevenson BR, Siliciano JD, Mooseker MS, Goodenough DA. Identification of ZO-1: a high molecular weight polypeptide associated with the tight junction (zonula occludens) in a variety of epithelia. J Cell Biol. 1986;103:755-66. https://doi.org/10.1083/jcb.103.3.755   DOI
17 Hinton BT, Howards SS. Rat testis and epididymis can transport [3H] 3-O-methyl-Dglucose, [3H] inositol and [3H]α-aminoisobutyric acid across its epithelia in vivo. Biol Reprod. 1982;27:1181-9. https://doi.org/10.1095/biolreprod27.5.1181   DOI
18 Hinton BT, Hernandez H. Neutral amino acid absorption by the rat epididymis. Biol Reprod. 1987;37:288-92. https://doi.org/10.1095/biolreprod37.2.288   DOI
19 Hedger MP. Immunophysiology and pathology of inflammation in the testis and epididymis. J Androl. 2011;32:625-40. https://doi.org/10.2164/jandrol.111.012989   DOI
20 Gumbiner B, Lowenkopf T, Apatira D. Identification of a 160-kDa polypeptide that binds to the tight junction protein ZO-1. Proc Natl Acad Sci USA. 1991;88:3460-4. https://doi.org/10.1073/pnas.88.8.3460   DOI
21 Haskins J, Gu L, Wittchen ES, Hibbard J, Stevenson BR. ZO-3, a novel member of the MAGUK protein family found at the tight junction, interacts with ZO-1 and occludin. J Cell Biol. 1998;141:199-208. https://doi.org/10.1083/jcb.141.1.199   DOI
22 Itoh M, Nagafuchi A, Moroi S, Tsukita S. Involvement of ZO-1 in cadherin-based cell adhesion through its direct binding to α catenin and actin filaments. J Cell Biol. 1997;138:181-92. https://doi.org/10.1083/jcb.138.1.181   DOI
23 Wittchen ES, Haskins J, Stevenson BR. Protein interactions at the tight junction: Actin has multiple binding partners, and ZO-1 forms independent complexes with ZO-2 and ZO-3. J Biol Chem. 1999;274:35179-85. https://doi.org/10.1074/jbc.274.49.35179   DOI
24 Furuse M, Itoh M, Hirase T, Nagafuchi A, Yonemura S, Tsukita S, et al. Direct association of occludin with ZO-1 and its possible involvement in the localization of occludin at tight junctions. J Cell Biol. 1994;127:1617-26. https://doi.org/10.1083/jcb.127.6.1617   DOI
25 Furuse M, Hirase T, Itoh M, Nagafuchi A, Yonemura S, Tsukita S, et al. Occludin: a novel integral membrane protein localizing at tight junctions. J Cell Biol. 1993;123:1777-88. https://doi.org/10.1083/jcb.123.6.1777   DOI
26 Furuse M, Fujita K, Hiiragi T, Fujimoto K, Tsukita S. Claudin-1 and -2: novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin. J Cell Biol. 1998;141:1539-50. https://doi.org/10.1083/jcb.141.7.1539   DOI
27 Van Itallie CM, Anderson JM. Claudins and epithelial paracellular transport. Annu Rev Physiol. 2006;68:403-29. https://doi.org/10.1146/annurev.physiol.68.040104.131404   DOI
28 Itoh M, Furuse M, Morita K, Kubota K, Saitou M, Tsukita S. Direct binding of three tight junction-associated MAGUKs, ZO-1, ZO-2, and ZO-3, with the COOH termini of claudins. J Cell Biol. 1999;147:1351-63. https://doi.org/10.1083/jcb.147.6.1351   DOI
29 Vitale R, Fawcett DW, Dym M. The normal development of the blood-testis barrier and the effects of clomiphene and estrogen treatment. Anat Rec. 1973;176:333-44. https://doi.org/10.1002/ar.1091760309   DOI
30 Russell LD, Peterson RN. Sertoli cell junctions: morphological and functional correlates. Int Rev Cytol. 1985;94:177-211. https://doi.org/10.1016/S0074-7696(08)60397-6   DOI
31 Kaitu'u-Lino TJ, Sluka P, Foo CFH, Stanton PG. Claudin-11 expression and localisation is regulated by androgens in rat Sertoli cells in vitro. Reproduction. 2007;133:1169-79. https://doi.org/10.1530/REP-06-0385   DOI
32 Ahn C, Shin DH, Lee D, Kang SM, Seok JH, Kang HY, et al. Expression of claudins, occludin, junction adhesion molecule A and zona occludens 1 in canine organs. Mol Med Rep. 2016;14:3697-703. https://doi.org/10.3892/mmr.2016.5725   DOI
33 Florin A, Maire M, Bozec A, Hellani A, Chater S, Bars R, et al. Androgens and postmeiotic germ cells regulate claudin-11 expression in rat Sertoli cells. Endocrinology. 2005;146:1532-40. https://doi.org/10.1210/en.2004-0834   DOI
34 Kim B, Breton S. The MAPK/ERK-signaling pathway regulates the expression and distribution of tight junction proteins in the mouse proximal epididymis. Biol Reprod. 2016;94:22. https://doi.org/10.1095/biolreprod.115.134965   DOI
35 Park YJ, Kim B. The Expression and localization of ZO-1, claudin 1, and claudin 4 in the pig epididymis. J Anim Reprod Biotechnol. 2019;34:190-6. https://doi.org/10.12750/JARB.34.3.190   DOI
36 Chen W, Hu J, Zhang Z, Chen L, Xie H, Dong N, et al. Localization and expression of zonula occludins-1 in the rabbit corneal epithelium following exposure to benzalkonium chloride. PLOS ONE. 2012;7:e40893. https://doi.org/10.1371/journal.pone.0040893   DOI
37 Morrow CMK, Mruk D, Cheng CY, Hess RA. Claudin and occludin expression and function in the seminiferous epithelium. Philos Trans R Soc B Biol Sci. 2010;365:1679-96. https://doi.org/10.1098/rstb.2010.0025   DOI
38 Cyr DG, Hermo L, Egenberger N, Mertineit C, Trasler JM, Laird DW. Cellular immunolocalization of occludin during embryonic and postnatal development of the mouse testis and epididymis. Endocrinology. 1999;140:3815-25. https://doi.org/10.1210/endo.140.8.6903   DOI
39 Gregory M, Cyr DG. Identification of multiple claudins in the rat epididymis. Mol Reprod Dev. 2006;73:580-8. https://doi.org/10.1002/mrd.20467   DOI
40 Castro MM, Kim B, Games PD, Hill E, Neves CA, Serrao JE, et al. Distribution pattern of ZO-1 and claudins in the epididymis of vampire bats. Tissue Barriers. 2020;8:1779526. https://doi.org/10.1080/21688370.2020.1779526   DOI
41 Rodriguez CM, Hinton BT. The testicular and epididymal luminal fluid microenvironment. In: Tulsiani DRP, editor. Introduction to mammalian reproduction. Boston, MA: Springer; 2003. pp. 61-77.
42 Kim B, Roy J, Shum WWC, Da Silva N, Breton S. Role of testicular luminal factors on basal cell elongation and proliferation in the mouse epididymis. Biol Reprod. 2015;92:9. https://doi.org/10.1095/biolreprod.114.123943   DOI
43 Gregory M, Dufresne J, Hermo L, Cyr DG. Claudin-1 is not restricted to tight junctions in the rat epididymis. Endocrinology. 2001;142:854-63. https://doi.org/10.1210/endo.142.2.7975   DOI
44 Setchell BP. The secretion of fluid by the testes of rats, rams and goats with some observations on the effect of age, cryptorchidism and hypophysectomy. J Reprod Fertil. 1970;23:79-85. https://doi.org/10.1530/jrf.0.0230079   DOI
45 Jeong YD, Park YJ, Ko YG, Lee SS, Lee SH, Lee J, et al. Development and differentiation of epididymal epithelial cells in Korean native black goat. Animals. 2020;10:1273. https://doi.org/10.3390/ani10081273   DOI
46 Wang RS, Yeh S, Chen LM, Lin HY, Zhang C, Ni J, et al. Androgen receptor in Sertoli cell is essential for germ cell nursery and junctional complex formation in mouse testes. Endocrinology. 2006;147:5624-33. https://doi.org/10.1210/en.2006-0138   DOI
47 Willems A, Batlouni SR, Esnal A, Swinnen JV, Saunders PTK, Sharpe RM, et al. Selective ablation of the androgen receptor in mouse Sertoli cells affects sertoli cell maturation, barrier formation and cytoskeletal development. PLOS ONE. 2010;5:e14168. https://doi.org/10.1371/journal.pone.0014168   DOI
48 Wang RS, Yeh S, Tzeng CR, Chang C. Androgen receptor roles in spermatogenesis and fertility: lessons from testicular cell-specific androgen receptor knockout mice. Endocr Rev. 2009;30:119-32. https://doi.org/10.1210/er.2008-0025   DOI
49 Willems A, De Gendt K, Allemeersch J, Smith LB, Welsh M, Swinnen JV, et al. Early effects of Sertoli cell-selective androgen receptor ablation on testicular gene expression. Int J Androl. 2010;33:507-17. https://doi.org/10.1111/j.1365-2605.2009.00964.x   DOI
50 Verhoeven G, Willems A, Denolet E, Swinnen JV, De Gendt K. Androgens and spermatogenesis: lessons from transgenic mouse models. Philos Trans R Soc B Biol Sci. 2010;365:1537-56. https://doi.org/10.1098/rstb.2009.0117   DOI
51 Carreau S, Hess RA. Oestrogens and spermatogenesis. Philos Trans R Soc B Biol Sci. 2010;365:1517-35. https://doi.org/10.1098/rstb.2009.0235   DOI
52 Joseph A, Shur BD, Hess RA. Estrogen, efferent ductules, and the epididymis. Biol Reprod. 2011;84:207-17. https://doi.org/10.1095/biolreprod.110.087353   DOI
53 Hess RA, Bunick D, Lee KH, Bahr J, Taylor JA, Korach KS, et al. A role for oestrogens in the male reproductive system. Nature. 1997;390:509-12. https://doi.org/10.1038/37352   DOI