Browse > Article
http://dx.doi.org/10.5187/jast.2022.e15

Osteopontin enhances sperm capacitation and in vitro fertilization efficiency in boars  

Chen, Yun (Henry Fok College of Biology and Agriculture, Shaoguan University)
Wang, Kai (National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University)
Zhang, Shouquan (National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University)
Publication Information
Journal of Animal Science and Technology / v.64, no.2, 2022 , pp. 235-246 More about this Journal
Abstract
In this study, we used more reliable experimental materials and methods to detect the effects of osteopontin (OPN) on boar sperm in vitro capacitation, acrosome reaction, and fertilization efficiency. We reorganized and obtained the OPN protein of the porcine source. Immunofluorescence and Western blot show the localization and expression of the OPN protein before and after sperm capacitation. To determine whether OPN can affect sperm during sperm capacitation, we examined cyclic adenosine monophosphate (cAMP) concentrations after sperm capacitation, and the results showed that OPN significantly increased the cAMP concentration in sperm (p < 0.05). Flow cytometry showed that 0.1 ㎍/mL OPN-treated sperm had better acrosome reaction ability. In vitro fertilization (IVF) showed that 0.1 ㎍/mL OPN significantly increased the rate of embryo division. In conclusion, this study found that 0.1 ㎍/mL porcine OPN protein can significantly improve porcine capacitated sperm motility, cAMP concentration after capacitation sperm, acrosome reaction ability, and embryo division during IVF and provides new clues to explore the mechanism of OPN's function on sperm.
Keywords
Osteopontin; In vitro fertilization; Sperm; Acrosome reaction; Capacitation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 You M, Yang Y, Zhong C, Chen F, Wang X, Jia T, et al. Efficient mAb production in CHO cells with optimized signal peptide, codon, and UTR. Appl Microbiol Biotechnol. 2018;102:5953-64. https://doi.org/10.1007/s00253-018-8986-5   DOI
2 Kim WD, Tokunaga M, Ozaki H, Ishibashi T, Honda K, Kajiura H, et al. Glycosylation pattern of humanized IgG-like bispecific antibody produced by recombinant CHO cells. Appl Microbiol Biotechnol. 2010;85:535-42. https://doi.org/10.1007/s00253-009-2152-z   DOI
3 Kim JY, Kim YG, Lee GM. CHO cells in biotechnology for production of recombinant proteins: current state and further potential. Appl Microbiol Biotechnol. 2012;93:917-30. https://doi.org/10.1007/s00253-011-3758-5   DOI
4 King GJ, Macpherson JW. A comparison of two methods for boar semen collection. J Anim Sci. 1973;36:563-5. https://doi.org/10.2527/jas1973.363563x   DOI
5 Brandriff BF, Gordon LA, Haendel S, Ashworth LK, Carrano AV. The chromosomal constitution of human sperm selected for motility. Fertil Steril. 1986;46:686-90. https://doi.org/10.1016/S0015-0282(16)49649-4   DOI
6 Visconti PE, Westbrook VA, Chertihin O, Demarco I, Sleight S, Diekman AB. Novel signaling pathways involved in sperm acquisition of fertilizing capacity. J Reprod Immunol. 2002;53:133-50. https://doi.org/10.1016/S0165-0378(01)00103-6   DOI
7 Abeydeera LR, Day BN. Fertilization and subsequent development in vitro of pig oocytes inseminated in a modified tris-buffered medium with frozen-thawed ejaculated spermatozoa. Biol Reprod. 1997;57:729-34. https://doi.org/10.1095/biolreprod57.4.729   DOI
8 Park HJ, Park JY, Kim JW, Yang SG, Jung JM, Kim MJ, et al. Melatonin improves the meiotic maturation of porcine oocytes by reducing endoplasmic reticulum stress during in vitro maturation. J Pineal Res. 2018;64:e12458. https://doi.org/10.1111/jpi.12458   DOI
9 Jin SK, Yang WX. Factors and pathways involved in capacitation: how are they regulated? Oncotarget. 2017;8:3600-27. https://doi.org/10.18632/oncotarget.12274   DOI
10 Okamura N, Tajima Y, Soejima A, Masuda H, Sugita Y. Sodium bicarbonate in seminal plasma stimulates the motility of mammalian spermatozoa through direct activation of adenylate cyclase. J Biol Chem. 1985;260:9699-705. https://doi.org/10.1016/S0021-9258(17)39295-5   DOI
11 Balbach M, Beckert V, Hansen JN, Wachten D. Shedding light on the role of cAMP in mammalian sperm physiology. Mol Cell Endocrinol. 2018;468:111-20. https://doi.org/10.1016/j.mce.2017.11.008   DOI
12 Monaco E, Gasparrini B, Boccia L, De Rosa A, Attanasio L, Zicarelli Let al. Effect of osteopontin (OPN) on in vitro embryo development in cattle. Theriogenology. 2009;71:450-7. https://doi.org/10.1016/j.theriogenology.2008.08.012   DOI
13 Matas C, Vieira L, Garcia-Vazquez FA, Aviles-Lopez K, Lopez-Ubeda R, Carvajal JA, et al. Effects of centrifugation through three different discontinuous Percoll gradients on boar sperm function. Anim Reprod Sci. 2011;127:62-72. https://doi.org/10.1016/j.anireprosci.2011.06.009   DOI
14 Gervasi MG, Visconti PE. Chang's meaning of capacitation: a molecular perspective. Mol Reprod Dev. 2016;83:860-74. https://doi.org/10.1002/mrd.22663   DOI
15 Michos I, Tsantarliotou M, Boscos CM, Tsousis G, Basioura A, Tzika ED, et al. Effect of boar sperm proteins and quality changes on field fertility. Animals. 2021;11:1813. https://doi.org/10.3390/ani11061813   DOI
16 Lv J, Wang S, Zeng C, Huang Y, Chen X. Construction of a shuttle expression vector with a promoter functioning in both halophilic archaea and bacteria. FEMS Microbiol Lett. 2013;349:9-15. https://doi.org/10.1111/1574-6968.12278   DOI
17 Elmi A, Banchelli F, Barone F, Fantinati P, Ventrella D, Forni M, et al. Semen evaluation and in vivo fertility in a Northern Italian pig farm: can advanced statistical approaches compensate for low sample size? An observational study. Anim Reprod Sci. 2018;192:61-8. https://doi.org/10.1016/j.anireprosci.2018.02.014   DOI
18 Gil MA, Cuello C, Parrilla I, Vazquez JM, Roca J, Martinez EA. Advances in swine in vitro embryo production technologies. Reprod Domest Anim. 2010;45:40-8. https://doi.org/10.1111/j.1439-0531.2010.01623.x   DOI
19 Goncalves RF, Wolinetz CD, Killian GJ. Influence of arginine-glycine-aspartic acid (RGD), integrins (αV and α5) and osteopontin on bovine sperm-egg binding, and fertilization in vitro. Theriogenology. 2007;67:468-74. https://doi.org/10.1016/j.theriogenology.2006.08.013   DOI
20 Hao Y, Mathialagan N, Walters E, Mao J, Lai L, Becker D, et al. Osteopontin reduces polyspermy during in vitro fertilization of porcine oocytes. Biol Reprod. 2006;75:726-33. https://doi.org/10.1095/biolreprod.106.052589   DOI
21 Kober L, Zehe C, Bode J. Optimized signal peptides for the development of high expressing CHO cell lines. Biotechnol Bioeng. 2013;110:1164-73. https://doi.org/10.1002/bit.24776   DOI
22 Ohlweiler LU, Mezzalira JC, Mezzalira A. Porcine IVF embryo development and estrogen receptors are influenced by the concentration of percoll gradients during sperm selection. Mol Reprod Dev. 2020;87:135-41. https://doi.org/10.1002/mrd.23290   DOI
23 Knox RV. Impact of swine reproductive technologies on pig and global food production. Adv Exp Med Biol. 2014;752:131-60. https://doi.org/10.1007/978-1-4614-8887-3_7   DOI
24 Leno-Colorado J, Hudson NJ, Reverter A, Perez-Enciso M. A pathway-centered analysis of pig domestication and breeding in Eurasia. G3 (Bethesda). 2017;7:2171-84. https://doi.org/10.1534/g3.117.042671   DOI
25 Dinnyes A, Liu J, Nedambale TL. Novel gamete storage. Reprod Fertil Dev. 2007;19:719-31. https://doi.org/10.1071/RD07035   DOI
26 Boccia L, Di Francesco S, Neglia G, De Blasi M, Longobardi V, Campanile G, et al. Osteopontin improves sperm capacitation and in vitro fertilization efficiency in buffalo (Bubalus bubalis). Theriogenology. 2013;80:212-7. https://doi.org/10.1016/j.theriogenology.2013.04.017   DOI
27 Lin C, Tholen E, Jennen D, Ponsuksili S, Schellander K, Wimmers K. Evidence for effects of testis and epididymis expressed genes on sperm quality and boar fertility traits. Reprod Domest Anim. 2006;41:538-43. https://doi.org/10.1111/j.1439-0531.2006.00710.x   DOI
28 Hao Y, Murphy CN, Spate L, Wax D, Zhong Z, Samuel M, et al. Osteopontin improves in vitro development of porcine embryos and decreases apoptosis. Mol Reprod Dev. 2008;75:291-8. https://doi.org/10.1002/mrd.20794   DOI
29 Signorelli J, Diaz ES, Morales P. Kinases, phosphatases and proteases during sperm capacitation. Cell Tissue Res. 2012;349:765-82. https://doi.org/10.1007/s00441-012-1370-3   DOI
30 Moura AA, Koc H, Chapman DA, Killian GJ. Identification of proteins in the accessory sex gland fluid associated with fertility indexes of dairy bulls: a proteomic approach. J Androl. 2006;27:201-11. https://doi.org/10.2164/jandrol.05089   DOI
31 Park CH, Lee SG, Choi DH, Lee CK. A modified swim-up method reduces polyspermy during in vitro fertilization of porcine oocytes. Anim Reprod Sci. 2009;115:169-81. https://doi.org/10.1016/j.anireprosci.2008.12.004   DOI
32 Wrana JL, Zhang Q, Sodek J. Full length cDNA sequence of porcine secreted phosphoprotein-I (SPP-I, osteopontin). Nucleic Acids Res. 1989;17:10119. https://doi.org/10.1093/nar/17.23.10119   DOI
33 Li X, Wang L, Li Y, Zhao N, Zhen L, Fu J, et al. Calcium regulates motility and protein phosphorylation by changing cAMP and ATP concentrations in boar sperm in vitro. Anim Reprod Sci. 2016;172:39-51. https://doi.org/10.1016/j.anireprosci.2016.07.001   DOI
34 Okamura N, Sugita Y. Activation of spermatozoan adenylate cyclase by a low molecular weight factor in porcine seminal plasma. J Biol Chem. 1983;258:13056-62. https://doi.org/10.1016/S0021-9258(17)44079-8   DOI