Browse > Article
http://dx.doi.org/10.5187/jast.2022.e3

Growth performance, carcass traits, muscle fiber characteristics and skeletal muscle mRNA abundance in hair lambs supplemented with ferulic acid  

Pena-Torres, Edgar Fernando (Division de Ciencias de la Salud, Universidad de Quintana Roo)
Castillo-Salas, Candelario (Departamento de Ciencias Agronomicas y Veterinarias, Instituto Tecnologico de Sonora)
Jimenez-Estrada, Ismael (Departamento de Fisiologia, Biofísica y Neurociencias, Centro de Investigacion y Estudios Avanzados del IPN)
Muhlia-Almazan, Adriana (Centro de Investigacion en Alimentacion y Desarrollo)
Pena-Ramos, Etna Aida (Centro de Investigacion en Alimentacion y Desarrollo)
Pinelli-Saavedra, Araceli (Centro de Investigacion en Alimentacion y Desarrollo)
Avendano-Reyes, Leonel (Instituto de Ciencias Agricolas, Universidad Autónoma de Baja California)
Hinojosa-Rodriguez, Cindy (Departamento de Fisiologia, Biofísica y Neurociencias, Centro de Investigacion y Estudios Avanzados del IPN)
Valenzuela-Melendres, Martin (Centro de Investigacion en Alimentacion y Desarrollo)
Macias-Cruz, Ulises (Instituto de Ciencias Agricolas, Universidad Autónoma de Baja California)
Gonzalez-Rios, Humberto (Centro de Investigacion en Alimentacion y Desarrollo)
Publication Information
Journal of Animal Science and Technology / v.64, no.1, 2022 , pp. 52-69 More about this Journal
Abstract
Ferulic acid (FA) is a phytochemical with various bioactive properties. It has recently been proposed that due to its phytogenic action it can be used as an alternative growth promoter additive to synthetic compounds. The objective of the present study was to evaluate the growth performance, carcass traits, fiber characterization and skeletal muscle gene expression on hair-lambs supplemented with two doses of FA. Thirty-two male lambs (n = 8 per treatment) were individually housed during a 32 d feeding trial to evaluate the effect of FA (300 and 600 mg d-1) or zilpaterol hydrochloride (ZH; 6 mg d-1) on growth performance, and then slaughtered to evaluate the effects on carcass traits, and muscle fibers morphometry from Longissimus thoracis (LT) and mRNA abundance of β2-adrenergic receptor (β2-AR), MHC-I, MHC-IIX and IGF-I genes. FA increased final weight and average daily gain with respect to non-supplemented animals (p < 0.05). The ZH supplementation increased LT muscle area, with respect to FA doses and control (p < 0.05). Cross-sectional area (CSA) of oxidative fibers was larger with FA doses and ZH (p < 0.05). Feeding ZH increased mRNA abundance for β2-AR compared to FA and control (p < 0.05), and expression of MHC-I was affected by FA doses and ZH (p < 0.05). Overall, FA supplementation of male hair lambs enhanced productive variables due to skeletal muscle hypertrophy caused by MHC-I up-regulation. Results suggest that FA has the potential like a growth promoter in lambs.
Keywords
Ferulic acid; Feedlot lambs; Muscle morphometry; Real-time polymerase chain reaction;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Wang Y, Chen X, Huang Z, Chen D, Yu B, Chen H, et al. Effects of dietary ferulic acid supplementation on growth performance and skeletal muscle fiber type conversion in weaned piglets. J Sci Food Agric. 2021;101:5116-23. https://doi.org/10.1002/jsfa.11157   DOI
2 Gonzalez JM, Johnson SE, Stelzleni AM, Thrift TA, Savell JD, Warnock TM, et al. Effect of ractopamine-HCl supplementation for 28 days on carcass characteristics, muscle fiber morphometrics, and whole muscle yields of six distinct muscles of the loin and round. Meat Sci. 2010;85:379-84. https://doi.org/10.1016/j.meatsci.2010.02.004   DOI
3 Bernabucci U, Lacetera N, Baumgard LH, Rhoads RP, Ronchi B, Nardone A. Metabolic and hormonal acclimation to heat stress in domesticated ruminants. Animal. 2010;4:1167-83. https://doi.org/10.1017/S175173111000090X   DOI
4 Valenzuela N. Acido ferulico como promotor del crecimiento en cerdos: mecanismo y efectos sobre la deposicion de tejido muscular [Ph.D. dissertation]. Sonora, Mexico: Centro de Investigacion en Alimentacion y Desarrollo; 2017.
5 Busquet M, Calsamiglia S, Ferret A, Kamel C. Plant extracts affect in vitro rumen microbial fermentation. J Dairy Sci. 2006;89:761-71. https://doi.org/10.3168/jds.S0022-0302(06)72137-3   DOI
6 Estrada-Angulo A, Barreras-Serrano A, Contreras G, Obregon JF, Robles-Estrada JC, Plascencia A, et al. Influence of level of zilpaterol chlorhydrate supplementation on growth performance and carcass characteristics of feedlot lambs. Small Rumin Res. 2008;80:107-10. https://doi.org/10.1016/j.smallrumres.2008.09.006   DOI
7 Baxa TJ, Hutcheson JP, Miller MF, Brooks JC, Nichols WT, Streeter MN, et al. Additive effects of a steroidal implant and zilpaterol hydrochloride on feedlot performance, carcass characteristics, and skeletal muscle messenger ribonucleic acid abundance in finishing steers. J Anim Sci. 2010;88:330-7. https://doi.org/10.2527/jas.2009-1797   DOI
8 Tsiplakou E, Flemetakis E, Kouri ED, Sotirakoglou K, Zervas G. The effect of long term under- and over-feeding on the expression of genes related to glucose metabolism in mammary tissue of sheep. J Dairy Res. 2015;82:228-35. https://doi.org/10.1017/S0022029915000072   DOI
9 Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods. 2001;25:402-8. https://doi.org/10.1006/meth.2001.1262   DOI
10 Johnson BJ, Smith SB, Chung KY. Historical overview of the effect of β-adrenergic agonists on beef cattle production. Asian-Australas J Anim Sci. 2014;27:757-66. https://doi.org/10.5713/ajas.2012.12524   DOI
11 Davila-Ramirez JL, Macias-Cruz U, Torrentera-Olivera NG, Gonzalez-Rios H, Soto-Navarro SA, Rojo-Rubio R, et al. Effects of zilpaterol hydrochloride and soybean oil supplementation on feedlot performance and carcass characteristics of hair-breed ram lambs under heat stress conditions. J Anim Sci. 2014;92:1184-92. https://doi.org/10.2527/jas.2012-6214   DOI
12 Beermann DH, Butler WR, Hogue DE, Fishell VK, Dalrymple RH, Ricks CA, et al. Cimaterol-induced muscle hypertrophy and altered endocrine status in lambs. J Anim Sci. 1987;65:1514-24. https://doi.org/10.2527/jas1987.6561514x   DOI
13 Mach N, Bach A, Velarde A, Devant M. Association between animal, transportation, slaughterhouse practices, and meat pH in beef. Meat Sci. 2008;78:232-8. https://doi.org/10.1016/j.meatsci.2007.06.021   DOI
14 Vahedi V, Towhidi A, Zare Shahneh A, Sadeghi M, Zamani F, Dunshea FR. Effects of β-agonist zilpaterol hydrochloride feeding and supplementation period on growth and carcass characteristics of Lori-Bakhtiari lambs. Small Rumin Res. 2014;119:65-71. https://doi.org/10.1016/j.smallrumres.2014.01.005   DOI
15 Lee MT, Lin WC, Yu B, Lee TT. Antioxidant capacity of phytochemicals and their potential effects on oxidative status in animals: a review. Asian-Australas J Anim Sci. 2017;30:299-308. https://doi.org/10.5713/ajas.16.0438   DOI
16 Li YJ, Li LY, Li JL, Zhang L, Gao F, Zhou GH. Effects of dietary supplementation with ferulic acid or vitamin E individually or in combination on meat quality and antioxidant capacity of finishing pigs. Asian-Australas J Anim Sci. 2015;28:374-81. https://doi.org/10.5713/ajas.14.0432   DOI
17 Chen Y, Guo B, Zhang H, Hu L, Wang J. Higenamine, a dual agonist for β1- and β2-adrenergic receptors identified by screening a traditional Chinese medicine library. Planta Med. 2019;85:738-44. https://doi.org/10.1055/a-0942-4502   DOI
18 Zhao Z, Moghadasian MH. Chemistry, natural sources, dietary intake and pharmacokinetic properties of ferulic acid: a review. Food Chem. 2008;109:691-702. https://doi.org/10.1016/j.foodchem.2008.02.039   DOI
19 Lopez-Garcia K, Mariscal-Tovar S, Serrano-Meneses MA, Castelan F, Martinez-Gomez M, Jimenez-Estrada I. Fiber type composition of pubococcygeus and bulbospongiosus striated muscles is modified by multiparity in the rabbit. Neurourol Urodyn. 2017;36:1456-63. https://doi.org/10.1002/nau.23143   DOI
20 Valenzuela-Grijalva N, Jimenez-Estrada I, Mariscal-Tovar S, Lopez-Garcia K, Pinelli-Saavedra A, Pena-Ramos EA, et al. Effects of ferulic acid supplementation on growth performance, carcass traits and histochemical characteristics of muscle fibers in finishing pigs. Animals. 2021;11:2455. https://doi.org/10.3390/ani11082455   DOI
21 Nachlas MM, Walker DG, Seligman AM. A histochemical method for the demonstration of diphosphopyridine nucleotide diaphorase. J Biophys Biochem Cytol. 1958;4:29-38. https://doi.org/10.1083/jcb.4.1.29   DOI
22 Rathmann RJ, Mehaffey JM, Baxa TJ, Nichols WT, Yates DA, Hutcheson JP, et al. Effects of duration of zilpaterol hydrochloride and days on the finishing diet on carcass cutability, composition, tenderness, and skeletal muscle gene expression in feedlot steers. J Anim Sci. 2009;87:3686-701. https://doi.org/10.2527/jas.2009-1818   DOI
23 Hayashi S, Aso H, Watanabe K, Nara H, Rose MT, Ohwada S, et al. Sequence of IGF-I, IGF-II, and HGF expression in regenerating skeletal muscle. Histochem Cell Biol. 2000;122:427-34. https://doi.org/10.1007/s00418-004-0704-y   DOI
24 Paraskeuas V, Fegeros K, Hunger C, Theodorou G, Mountzouris KC. Dietary inclusion level effects of a phytogenic characterised by menthol and anethole on broiler growth performance, biochemical parameters including total antioxidant capacity and gene expression of immunerelated biomarkers. Anim Prod Sci. 2016;57:33-41. https://doi.org/10.1071/AN15367   DOI
25 Mersmann HJ. Overview of the effects of β-adrenergic receptor agonists on animal growth including mechanisms of action. J Anim Sci. 1998;76:160-72. https://doi.org/10.2527/1998.761160x   DOI
26 Miller EK, Chung KY, Hutcheson JP, Yates DA, Smith SB, Johnson BJ. Zilpaterol hydrochloride alters abundance of β-adrenergic receptors in bovine muscle cells but has little effect on de novo fatty acid biosynthesis in bovine subcutaneous adipose tissue explants. J Anim Sci. 2012;90:1317-27. https://doi.org/10.2527/jas.2011-4589   DOI
27 Avendano-Reyes L, Torres-Rodriguez V, Meraz-Murillo FJ, Perez-Linares C, Figueroa-Saavedra F, Robinson PH. Effects of two β-adrenergic agonists on finishing performance, carcass characteristics, and meat quality of feedlot steers. J Anim Sci. 2006;84:3259-65. https://doi.org/10.2527/jas.2006-173   DOI
28 Hope-Jones M, Strydom PE, Frylinck L, Webb EC. The efficiency of electrical stimulation to counteract the negative effects of β-agonists on meat tenderness of feedlot cattle. Meat Sci. 2010;86:699-705. https://doi.org/10.1016/j.meatsci.2010.06.008   DOI
29 Guth L, Samaha FJ. Procedure for the histochemical demonstration of actomyosin ATPase. Exp Neurol. 1970;28:365-7. https://doi.org/10.1016/0014-4886(70)90244-X   DOI
30 Pena-Torres EF, Davila-Ramirez JL, Pena-Ramos EA, Valenzuela-Melendres M, PinelliSaavedra A, Avendano-Reyes L, et al. Effects of dietary ferulic acid on growth performance, carcass traits and meat quality of heifers. J Sci Food Agric. 2021;101:548-54. https://doi.org/10.1002/jsfa.10666   DOI
31 Valadez-Garcia KM, Avendano-Reyes L, Diaz-Molina R, Mellado M, Meza-Herrera CA, Correa-Calderon A, et al. Free ferulic acid supplementation of heat-stressed hair ewe lambs: oxidative status, feedlot performance, carcass traits and meat quality. Meat Sci. 2021;173:108395. https://doi.org/10.1016/j.meatsci.2020.108395   DOI
32 Hahn GL. Dynamic responses of cattle to thermal heat loads. J Anim Sci. 1999;77:10-20. https://doi.org/10.2527/1997.77suppl_210x   DOI
33 Gorewit RC. Pituitary and thyroid hormone responses of heifers after ferulic acid administration. J Dairy Sci. 1983;66:624-9. https://doi.org/10.3168/jds.S0022-0302(83)81834-7   DOI
34 Strydom PE, Frylinck L, Montgomery JL, Smith MF. The comparison of three β-agonists for growth performance, carcass characteristics and meat quality of feedlot cattle. Meat Sci. 2009;81:557-64. https://doi.org/10.1016/j.meatsci.2008.10.011   DOI
35 Macias-Cruz U, Perard S, Vicente R, Alvarez FD, Torrentera-Olivera NG, Gonzalez-Rios H, et al. Effects of free ferulic acid on productive performance, blood metabolites, and carcass characteristics of feedlot finishing ewe lambs. J Anim Sci. 2014;92:5762-8. https://doi,org/10.2527/jas.2014-8208   DOI
36 Avendano-Reyes L, Macias-Cruz U, Alvarez-Valenzuela FD, Aguila-Tepato E, Torrentera-Olivera NG, Soto-Navarro SA. Effects of zilpaterol hydrochloride on growth performance, carcass characteristics, and wholesale cut yield of hair-breed ewe lambs consuming feedlot diets under moderate environmental conditions. J Anim Sci. 2011;89:4188-94. https://doi.org/10.2527/jas.2011-3904   DOI
37 Macias-Cruz U, Avendano-Reyes L, Alvarez-Valenzuela FD, Torrentera-Olivera NG, Meza-Herrera C, Mellado-Bosque M, et al. Crecimiento y caracteristicas de canal en corderas tratadas con clorhidrato de zilpaterol durante primavera y verano. Rev Mex Cienc Pecu. 2013;4:1-12.
38 Shavlakadze T, Winn N, Rosenthal N, Grounds MD. Reconciling data from transgenic mice that overexpress IGF-I specifically in skeletal muscle. Growth Horm IGF Res. 2005;15:4-18. https://doi.org/10.1016/j.ghir.2004.11.001   DOI
39 Garcia-Gonzalez R, Lopez S, Fernandez M, Bodas R, Gonzalez JS. Screening the activity of plants and spices for decreasing ruminal methane production in vitro. Anim Feed Sci Technol. 2008;147:36-52. https://doi.org/10.1016/j.anifeedsci.2007.09.008   DOI
40 Kumar A, Kanwar SS. Synthesis of ethyl ferulate in organic medium using celite-immobilized lipase. Bioresour Technol. 2011;102:2162-7. https://doi.org/10.1016/j.biortech.2010.10.027   DOI
41 Beermann DH. Beta-adrenergic receptor agonist modulation of skeletal muscle growth. J Anim Sci. 2002;80:E18-23. https://doi.org/10.2527/animalsci2002.0021881200800ES10004x
42 Kim KM, Yu KW, Kang DH, Koh JH, Hong BS, Suh HJ. Anti-stress and anti-fatigue effects of fermented rice bran. Biosci Biotechnol Biochem. 2001;65:2294-6. https://doi.org/10.1271/bbb.65.2294   DOI
43 Valenzuela-Grijalva NV, Pinelli-Saavedra A, Muhlia-Almazan A, Dominguez-Diaz D, Gonzalez-Rios H. Dietary inclusion effects of phytochemicals as growth promoters in animal production. J Anim Sci Technol. 2017;59:8. https://doi.org/10.1186/s40781-017-0133-9   DOI
44 Macias-Cruz U, Lopez-Baca MA, Vicente R, Mejia A, Alvarez FD, Correa-Calderon A, et al. Effects of seasonal ambient heat stress (spring vs. summer) on physiological and metabolic variables in hair sheep located in an arid region. Int J Biometeorol. 2016;60:1279-86. https://doi.org/10.1007/s00484-015-1123-6   DOI
45 Montgomery JL, Krehbiel CR, Cranston JJ, Yates DA, Hutcheson JP, Nichols WT, et al. Dietary zilpaterol hydrochloride. I. Feedlot performance and carcass traits of steers and heifers. J Anim Sci. 2009;87:1374-83. https://doi.org/10.2527/jas.2008-1162   DOI
46 Reeds PJ, Mersmann HJ. Protein and energy requirements of animals treated with β-adrenergic agonists: a discussion. J Anim Sci. 1991;69:1532-50. https://doi.org/10.2527/1991.6941532x   DOI
47 Eslami S, Esa NM, Marandi SM, Ghasemi G, Eslami S. Effects of gamma oryzanol supplementation on anthropometric measurements & muscular strength in healthy males following chronic resistance training. Indian J Med Res. 2014;139:857-63.
48 Karlstrom K, Essen-Gustavsson B, Lindholm A, Persson SGB. Capillary supply in relation to muscle metabolic profile and cardiocirculatory parameters. Equine Exerc Physiol. 1991;3:239-44.
49 Pena-Torres EF, Gonzalez-Rios H, Avendano-Reyes L, Valenzuela-Grijalva NV, Pinelli-Saavedra A, Muhlia-Almazan A, et al. Hydroxycinnamic acids in animal production: pharmacokinetics, pharmacodynamics and growth promoting effects. Review. Rev Mex Cienc Pecu. 2019;10:391-415. https://doi.org/10.22319/rmcp.v10i2.4526   DOI
50 te Pas MFW, Everts ME, Haagsman HP. Muscle development of livestock animals: physiology, genetics and meat quality. Wallingford, UK: CABI; 2004. p. 432.
51 Mizunoya W, Okamoto S, Miyahara H, Akahoshi M, Suzuki T, Do MQ, et al. Fast-to-slow shift of muscle fiber-type composition by dietary apple polyphenols in rats: impact of the low-dose supplementation. Anim Sci J. 2017;88:489-99. https://doi.org/10.1111/asj.12655   DOI
52 Kim YS, Lee YB, Dalrymple RH. Effect of the repartitioning agent cimaterol on growth, carcass and skeletal muscle characteristics in lambs. J Anim Sci. 1987;65:1392-9. https://doi.org/10.2527/jas1987.6551392x   DOI
53 Kellermeier JD, Tittor AW, Brooks JC, Galyean ML, Yates DA, Hutcheson JP, et al. Effects of zilpaterol hydrochloride with or without an estrogen-trenbolone acetate terminal implant on carcass traits, retail cutout, tenderness, and muscle fiber diameter in finishing steers. J Anim Sci. 2009;87:3702-11. https://doi.org/10.2527/jas.2009-1823   DOI
54 Platt JP, Anderson MJ, Johnson BJ. The effect of ferulic acid on myogenic regulators of growth in bovine satellite cells. Paper presented at: Texas Tech University Undergraduate Research Conference; 2012; Lubbock, TX.
55 Anderson PT, Johnson B, Dikeman M. Growth of meat animals metabolic modifiers. In: Devine C, Dikeman M, editors. Encyclopedia of meat sciences. 2nd ed. Cambridge, MA: Academic Press; 2014. p. 62-9.
56 Gonzalez JM, Carter JN, Johnson DD, Ouellette SE, Johnson SE. Effect of ractopamine-hydrochloride and trenbolone acetate on longissimus muscle fiber area, diameter, and satellite cell numbers in cull beef cows. J Anim Sci. 2007;85:1893-901. https://doi.org/10.2527/jas.2006-624   DOI
57 Gonzalez-Rios H, Davila-Ramirez JL, Pena-Ramos EA, Valenzuela-Melendres M, Zamorano-Garcia L, Islava-Lagarda TY, et al. Dietary supplementation of ferulic acid to steers under commercial feedlot feeding conditions improves meat quality and shelf life. Anim Feed Sci Technol. 2016;222:111-21. https://doi.org/10.1016/j.anifeedsci.2016.10.011   DOI
58 Herrera RH, Castillo MLA, Torres AJA. Methods to accelerate muscle development, decrease fat deposits, and enhance feeding efficiency in pigs. United States Patent US20110046224A1. 2009.
59 Young OA, Watkins S, Oldham JM, Bass JJ. The role of insulin-like growth factor I in clenbuterol-stimulated growth in growing lambs. J Anim Sci. 1995;73:3069-77. https://doi.org/10.2527/1995.73103069x   DOI