Browse > Article
http://dx.doi.org/10.5187/jast.2021.e110

Feasibility of sodium long chain polyphosphate as a potential growth promoter in broilers  

Moon, Seung-Gyu (Department of Animal Science and Technology, Konkuk University)
Kothari, Damini (Department of Animal Science and Technology, Konkuk University)
Kim, Woong-Lae (Department of Animal Science and Technology, Konkuk University)
Lee, Woo-Do (Department of Animal Science and Technology, Konkuk University)
Kim, Kyung-Il (Department of Animal Science and Technology, Konkuk University)
Kim, Jong-Il (Department of Animal Science and Technology, Konkuk University)
Kim, Eun-Jib (Division of Animal Husbandry, Yonam College)
Kim, Soo-Ki (Department of Animal Science and Technology, Konkuk University)
Publication Information
Journal of Animal Science and Technology / v.63, no.6, 2021 , pp. 1286-1300 More about this Journal
Abstract
The objective of this study was to evaluate in vitro antimicrobial and anti-biofilm activity of sodium long chain polyphosphate (SLCPP) and effect of dietary supplementation of SLCPP on growth performance, organ characteristics, blood metabolites, and intestinal microflora of broilers. Antimicrobial activities of SLCPP were observed against Escherichia coli O157:H7, Listeria monocytogenes, Salmonella enterica ser. Pullorum, Shigella sonnei, Klebsiella pneumonia, Pseudomonas aeruginosa in agar well diffusion assay. In addition, SLCPP demonstrated good anti-biofilm activity against K. pneumonia and P. aeruginosa. Furthermore, to investigate the dietary effect of SLCPP, a total of 480 1-day-old male Ross 308 broiler chicks were randomly allotted to three dietary treatment groups (4 replicates per group, 40 birds in each replicate): an antibiotic-free corn-soybean meal basal diet (NC); basal diet + enramycin 0.01% (PC); and basal diet + 0.1% SLCPP (SPP). The experiment lasted for 35 days. Results showed that birds fed with SLCPP had higher body weight (BW) and average daily gain (ADG), and lower feed conversion ratio (FCR) during the grower phase (days 7 to 21) (p < 0.05). Except for blood urea nitrogen, all other blood biochemical parameters remained unaffected by the dietary supplementation of SLCPP. Compared to the control group, lengths of the duodenum and ileum in the SPP group were significantly shorter (p < 0.05). Moreover, counts of lactic acid bacteria (LAB), total aerobes, and Streptococcus spp. in jejunum as well as LAB in cecum were increased in the SPP group than in the PC group (p < 0.05). These results suggest that dietary supplementation of SLCPP might promote the growth of broilers in their early growth phase.
Keywords
Sodium long chain polyphosphate; Antimicrobial activity; Anti-biofilm activity; Broiler; Growth promoter; Supplementation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Fajardo P, Pastrana L, Mendez J, Rodriguez I, Fucinos C, Guerra NP. Effects of feeding of two potentially probiotic preparations from lactic acid bacteria on the performance and faecal microflora of broiler chickens. Sci World J. 2012;2012:562635. https://doi.org/10.1100/2012/562635   DOI
2 Adhikari P, Lee CH, Cosby DE, Cox NA, Kim WK. Effect of probiotics on fecal excretion, colonization in internal organs and immune gene expression in the ileum of laying hens challenged with Salmonella Enteritidis. Poult Sci. 2019;98:1235-42. https://doi.org/10.3382/ps/pey443   DOI
3 Famuyide IM, Aro AO, Fasina FO, Eloff JN, McGaw LJ. Antibacterial and antibiofilm activity of acetone leaf extracts of nine under-investigated South African Eugenia and Syzygium (Myrtaceae) species and their selectivity indices. BMC Complement Altern Med. 2019;19:141. https://doi.org/10.1186/s12906-019-2547-z   DOI
4 Ding XM, Li DD, Bai SP, Wang JP, Zeng QF, Su ZW, et al. Effect of dietary xylooligosaccharides on intestinal characteristics, gut microbiota, cecal short-chain fatty acids, and plasma immune parameters of laying hens. Poult Sci. 2018;97:874-81. https://doi.org/10.3382/ps/pex372   DOI
5 Jang EY, Kim M, Noh MH, Moon JH, Lee JY. In vitro effects of polyphosphate against Prevotella intermedia in planktonic phase and biofilm. Antimicrob Agents Chemother. 2016;60:818-26. https://doi.org/10.1128/AAC.01861-15   DOI
6 Lim SK. Establishment of antimicrobial resistance surveillance system for livestock 2012. Seoul: Animal and Plant Quarantine Agency; 2015.
7 Walsh TR, Wu Y. China bans colistin as a feed additive for animals. Lancet Infect Dis. 2016;16:1102-3. https://doi.org/10.1016/S1473-3099(16)30329-2   DOI
8 Cardinal KM, Kipper M, Andretta I, Ribeiro AML. Withdrawal of antibiotic growth promoters from broiler diets: performance indexes and economic impact. Poult Sci. 2019;98:6659-67. https://doi.org/10.3382/ps/pez536   DOI
9 Kulakovskaya TV, Vagabov VM, Kulaev IS. Inorganic polyphosphate in industry, agriculture and medicine: modern state and outlook. Process Biochem. 2012;47:1-10. https://doi.org/10.1016/j.procbio.2011.10.028   DOI
10 Moon JH, Park JH, Lee JY. Antibacterial action of polyphosphate on Porphyromonas gingivalis. Antimicrob Agents Chemother. 2011;55:806-12. https://doi.org/10.1128/AAC.01014-10   DOI
11 Obritsch JA, Ryu D, Lampila LE, Bullerman LB. Antibacterial effects of long-chain polyphosphates on selected spoilage and pathogenic bacteria. J Food Prot. 2008;71:1401-5. https://doi.org/10.4315/0362-028X-71.7.1401   DOI
12 Tsutsumi K, Saito N, Kawazoe Y, Ooi HK, Shiba T. Morphogenetic study on the maturation of osteoblastic cell as induced by inorganic polyphosphate. PLOS ONE. 2014;9:e86834. https://doi.org/10.1371/journal.pone.0086834   DOI
13 Moon JH, Noh MH, Jang EY, Yang SB, Kang SW, Kwack KH, et al. Effects of sodium tripolyphosphate on oral commensal and pathogenic bacteria. Pol J Microbiol. 2019;68:263-8. https://doi.org/10.33073/pjm-2019-029   DOI
14 Jadhav S, Shah R, Bhave M, Palombo EA. Inhibitory activity of yarrow essential oil on Listeria planktonic cells and biofilms. Food Control. 2013;29:125-30. https://doi.org/10.1016/j.foodcont.2012.05.071   DOI
15 Lee JH, Moon JH, Ryu JI, Kang SW, Kwack KH, Lee JY. Antibacterial effects of sodium tripolyphosphate against Porphyromonas species associated with periodontitis of companion animals. J Vet Sci. 2019;20:e33. https://doi.org/10.4142/jvs.2019.20.e33   DOI
16 Dave RI, Shah NP. Evaluation of media for selective enumeration of Streptococcus thermophilus, Lactobacillus delbrueckii ssp. bulgaricus, Lactobacillus acidophilus, and Bifidobacteria. J Dairy Sci. 1996;79:1529-36. https://doi.org/10.3168/jds.S0022-0302(96)76513-X   DOI
17 Sharma D, Misba L, Khan AU. Antibiotics versus biofilm: an emerging battleground in microbial communities. Antimicrob Resist Infect Control. 2019;8:76. https://doi.org/10.1186/s13756-019-0533-3   DOI
18 Lamp AE, Mereu A, Ruiz-Ascacibar I, Moritz JS. Inorganic feed phosphate type determines mineral digestibility, broiler performance, and bone mineralization. J Appl Poult Res. 2020;29:559-72. https://doi.org/10.1016/j.japr.2020.03.003   DOI
19 Le Roy CI, Woodward MJ, Ellis RJ, La Ragione RM, Claus SP. Antibiotic treatment triggers gut dysbiosis and modulates metabolism in a chicken model of gastro-intestinal infection. BMC Vet Res. 2019;15:37. https://doi.org/10.1186/s12917-018-1761-0   DOI
20 Abdel-Raheem SM, Abd-Allah SMS, Hassanein KMA. The effects of prebiotic, probiotic and synbiotic supplementation on intestinal microbial ecology and histomorphology of broiler chickens. Int J Agro Vet Med Sci. 2012;6:277-89. https://doi.org/10.5455/ijavms.156   DOI
21 Damron BL, Flunker LK. Supplementation of broiler drinking water with liquid ammonium polyphosphate. Br Poult Sci. 1991;32:377-82. https://doi.org/10.1080/00071669108417362   DOI
22 Selim S, Abdel-Megeid NS, Abou-Elnaga MK, Mahmoud SF. Early nutrition with different diets composition versus fasting on immunity-related gene expression and histomorphology of digestive and lymphoid organs of layer-type chicks. Animals. 2021;11:1568. https://doi.org/10.3390/ani11061568   DOI
23 Wu G, Bazer FW, Dai Z, Li D, Wang J, Wu Z. Amino acid nutrition in animals: protein synthesis and beyond. Annu Rev Anim Biosci. 2014;2:387-417. https://doi.org/10.1146/an-nurev-animal-022513-114113   DOI
24 Samanta G, Mishra SK, Behura NC, Sahoo G, Behera K, Swain RK, et al. Studies on utilization of calcium phosphate nano particles as source of phosphorus in broilers. Anim Nutr Feed Technol. 2019;19:77-88. https://doi.org/10.5958/0974-181X.2019.00008.8   DOI
25 Chung ELT, Kamalludin MH, Jesse FFA, Reduan MFH, Loh TC, et al. Effect of monocalcium phosphate supplementation on the growth performance, carcass characteristic, gut histomorphology, meat and bone quality of broiler chickens. Pertanika J Trop Agric Sci. 2019;42:1234-50.
26 Johnson DE, Johnson KA, Baldwin RL. Changes in liver and gastrointestinal tract energy demands in response to physiological workload in ruminants. J Nutr. 1990;120:649-55. https://doi.org/10.1093/jn/120.6.649   DOI
27 Erener G, Ocak N, Altop A, Cankaya S, Aksoy HM, Ozturk E. Growth performance, meat quality and caecal coliform bacteria count of broiler chicks fed diet with green tea extract. Asian-Australas J Anim Sci. 2011;24:1128-35. https://doi.org/10.5713/ajas.2011.10434   DOI
28 Fang J, Martinez Y, Deng C, Zhu D, Peng H, Jiang H, et al. Effects of dietary enzymolysis products of wheat gluten on the growth performance, serum biochemical, immune, and antioxidant status of broilers. Food Agric Immunol. 2017;28:1155-67. https://doi.org/10.1080/09540105.2017.1332009   DOI
29 Proszkowiec-Weglarz M, Angel R. Calcium and phosphorus metabolism in broilers: effect of homeostatic mechanism on calcium and phosphorus digestibility. J Appl Poult Res. 2013;22:609-27. https://doi.org/10.3382/japr.2012-00743   DOI
30 Jensen LS, Edwards HM Jr. Availability of phosphorus from ammonium polyphosphate for growing chickens. Poult Sci. 1980;59:1280-3. https://doi.org/10.3382/ps.0591280   DOI
31 Reis MP, Fassani EJ, Junior AAPG, Rodrigues PB, Bertechini AG, Barrett N, et al. Effect of Bacillus subtilis (DSM 17299) on performance, digestibility, intestine morphology, and pH in broiler chickens. J Appl Poult Res. 2017;26:573-83. https://doi.org/10.3382/japr/pfx032   DOI
32 Mowrer JE, Sedlacek P, Kim J, Ritz C, Kim WK. Supplementation of nitrocompounds in broiler diets: effects on bird performance, ammonia volatilization and nitrogen retention in broiler manure. J Environ Sci Health B. 2016;51:126-31. https://doi.org/10.1080/03601234.2015.1092835   DOI
33 Kahn LH. Antimicrobial resistance: a One Health perspective. Trans R Soc Trop Med Hyg. 2017;111:255-60. https://doi.org/10.1093/trstmh/trx050   DOI
34 Yang X, Liang S, Guo F, Ren Z, Yang X, Long F. Gut microbiota mediates the protective role of Lactobacillus plantarum in ameliorating deoxynivalenol-induced apoptosis and intestinal inflammation of broiler chickens. Poult Sci. 2020;99:2395-406. https://doi.org/10.1016/j.psj.2019.10.034   DOI
35 NRC [National Research Council]. Antibiotics in animal feeds. Washington, DC: The National Academies Press; 1979.
36 The European Parliament, The Council of The European Union. Regulation (EC) no 1831/2003 of the European Parliament and of the Council of 22 September 2003 on additives for use in animal nutrition. Off J Eur Union. 2003;L268:29-43.
37 Gadde U, Kim WH, Oh ST, Lillehoj HS. Alternatives to antibiotics for maximizing growth performance and feed efficiency in poultry: a review. Anim Health Res Rev. 2017;18:26-45. https://doi.org/10.1017/S1466252316000207   DOI
38 Davies M, Walsh TR. A colistin crisis in India. Lancet Infect Dis. 2018;18:256-7. https://doi.org/10.1016/S1473-3099(18)30072-0   DOI
39 Goutard FL, Bordier M, Calba C, Erlacher-Vindel E, Gochez D, de Balogh K, et al. Antimicrobial policy interventions in food animal production in South East Asia. Br Med J. 2017;358. https://doi.org/10.1136/bmj.j3544   DOI
40 Diaz Carrasco JM, Redondo EA, Pin Viso ND, Redondo LM, Farber MD, Fernandez Miyakawa ME. Tannins and bacitracin differentially modulate gut microbiota of broiler chickens. Biomed Res Int. 2018;2018:1879168. https://doi.org/10.1155/2018/1879168   DOI
41 Rao NN, Gomez-Garcia MR, Kornberg A. Inorganic polyphosphate: essential for growth and survival. Annu Rev Biochem. 2009;78:605-47. https://doi.org/10.1146/annurev.biochem.77.083007.093039   DOI
42 Lorencova E, Vltavska P, Budinsky P, Koutny M. Antibacterial effect of phosphates and polyphosphates with different chain length. J Environ Sci Health A. 2012;47:2241-5. https://doi.org/10.1080/10934529.2012.707544   DOI
43 Chambert R, Petit-Glatron MF. Anionic polymers of Bacillus subtilis cell wall modulate the folding rate of secreted proteins. FEMS Microbiol Lett. 1999;179:43-7. https://doi.org/10.1111/j.1574-6968.1999.tb08705.x   DOI
44 Harada K, Itoh H, Kawazoe Y, Miyazaki S, Doi K, Kubo T, et al. Polyphosphate-mediated inhibition of tartrate-resistant acid phosphatase and suppression of bone resorption of osteoclasts. PLOS ONE. 2013;8:e78612. https://doi.org/10.1371/journal.pone.0078612   DOI
45 Gao P, Hou Q, Kwok LY, Huo D, Feng S, Zhang H. Effect of feeding Lactobacillus plantarum P-8 on the faecal microbiota of broiler chickens exposed to lincomycin. Sci Bull. 2017;62:105-13. https://doi.org/10.1016/j.scib.2017.01.001   DOI
46 Gray MJ, Wholey WY, Wagner NO, Cremers CM, Mueller-Schickert A, Hock NT, et al. Polyphosphate is a primordial chaperone. Mol Cell. 2014;53:689-99. https://doi.org/10.1016/j.molcel.2014.01.012   DOI
47 Kawazoe Y, Shiba T, Nakamura R, Mizuno A, Tsutsumi K, Uematsu T, et al. Induction of calcification in MC3T3-E1 cells by inorganic polyphosphate. J Dent Res. 2004;83:613-8. https://doi.org/10.1177/154405910408300806   DOI
48 Morita K, Doi K, Kubo T, Takeshita R, Kato S, Shiba T, et al. Enhanced initial bone regeneration with inorganic polyphosphate-adsorbed hydroxyapatite. Acta Biomater. 2010;6:2808-15. https://doi.org/10.1016/j.actbio.2009.12.055   DOI
49 Nhung NT, Chansiripornchai N, Carrique-Mas JJ. Antimicrobial resistance in bacterial poultry pathogens: a review. Front Vet Sci. 2017;4:126. https://doi.org/10.3389/fvets.2017.00126   DOI
50 Kwon HJ, Choo YK, Choi YI, Kim EJ, Kim HK, Heo KN, et al. Carcass characteristics and meat quality of Korean native ducks and commercial meat-type ducks raised under same feeding and rearing conditions. Asian-Australas J Anim Sci. 2014;27:1638-43. https://doi.org/10.5713/ajas.2014.14191   DOI