Browse > Article
http://dx.doi.org/10.5187/jast.2021.e93

Enhanced supply of methionine regulates protein synthesis in bovine mammary epithelial cells under hyperthermia condition  

Zhou, Jia (Animal Nutrition Institute, Sichuan Agricultural University)
Yue, Shuangming (Department of Bioengineering, Sichuan Water Conservancy Vocation College)
Xue, Benchu (Animal Nutrition Institute, Sichuan Agricultural University)
Wang, Zhisheng (Animal Nutrition Institute, Sichuan Agricultural University)
Wang, Lizhi (Animal Nutrition Institute, Sichuan Agricultural University)
Peng, Quanhui (Animal Nutrition Institute, Sichuan Agricultural University)
Xue, Bai (Animal Nutrition Institute, Sichuan Agricultural University)
Publication Information
Journal of Animal Science and Technology / v.63, no.5, 2021 , pp. 1126-1141 More about this Journal
Abstract
Recent evidence has shown that methionine (Met) supplementation can improve milk protein synthesis under hyperthermia (which reduces milk production). To explore the mechanism by which milk protein synthesis is affected by Met supplementation under hyperthermia, mammary alveolar (MAC-T) cells were incubated at a hyperthermic temperature of 42℃ for 6 h in media with different concentrations of Met. While the control group (CON) contained a normal amino acid concentration profile (60 ㎍/mL of Met), the three treatment groups were supplemented with Met at concentrations of 10 ㎍/mL (MET70, 70 ㎍/mL of Met), 20 ㎍/mL (MET80, 80 ㎍/mL of Met), and 30 ㎍/mL (MET90,90 ㎍/mL of Met). Our results show that additional Met supplementation increases the mRNA and protein levels of BCL2 (B-cell lymphoma-2, an anti-apoptosis agent), and decreases the mRNA and protein levels of BAX (Bcl-2-associated X protein, a pro-apoptosis agent), especially at an additional supplementary concentration of 20 ㎍/mL (group Met80). Supplementation with higher concentrations of Met decreased the mRNA levels of Caspase-3 and Caspase-9, and increased protein levels of heat shock protein (HSP70). The total protein levels of the mechanistic target of rapamycin (mTOR) and the mTOR signalling pathway-related proteins, AKT, ribosomal protein S6 kinase B1 (RPS6KB1), and ribosomal protein S6 (RPS6), increased with increasing Met supplementation, and peaked at 80 ㎍/mL Met (group Met80). In addition, we also found that additional Met supplementation upregulated the gene expression of αS1-casein (CSN1S1), β-casein (CSN2), and the amino acid transporter genes SLC38A2, SLC38A3 which are known to be mTOR targets. Additional Met supplementation, however, had no effect on the gene expression of κ-casein (CSN3) and solute carrier family 34 member 2 (SLC34A2). Our results suggest that additional Met supplementation with 20 ㎍/mL may promote the synthesis of milk proteins in bovine mammary epithelial cells under hyperthermia by inhibiting apoptosis, activating the AKT-mTOR-RPS6KB1 signalling pathway, and regulating the entry of amino acids into these cells.
Keywords
Hyperthermia; Protein synthesis; Methionine; Cellular mechanism;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Du J, Di HS, Guo L, Li ZH, Wang GL. Hyperthermia causes bovine mammary epithelial cell death by a mitochondrial-induced pathway. J Therm Biol. 2008;33:37-47. https://doi.org/10.1016/j.jtherbio.2007.06.002   DOI
2 Osorio JS, Ji P, Drackley JK, Luchini D, Loor JJ. Supplemental Smartamine M or MetaSmart during the transition period benefits postpartal cow performance and blood neutrophil function. J Dairy Sci. 2013;96:6248-63. https://doi.org/10.3168/jds.2012-5790   DOI
3 Girard CL, Lapierre H, Matte JJ, Lobley GE. Effects of dietary supplements of folic acid and rumen-protected methionine on lactational performance and folate metabolism of dairy cows. J Dairy Sci. 2005;88:660-70. https://doi.org/10.3168/jds.S0022-0302(05)72730-2   DOI
4 Wang C, Liu HY, Wang YM, Yang ZQ, Liu JX, Wu YM, et al. Effects of dietary supplementation of methionine and lysine on milk production and nitrogen utilization in dairy cows. J Dairy Sci. 2010;93:3661-70. https://doi.org/10.3168/jds.2009-2750   DOI
5 Broderick GA, Stevenson MJ, Patton RA. Effect of dietary protein concentration and degradability on response to rumen-protected methionine in lactating dairy cows. J Dairy Sci. 2009;92:2719-28. https://doi.org/10.3168/jds.2008-1277   DOI
6 Batistel F, Arroyo JM, Bellingeri A, Wang L, Saremi B, Parys C, et al. Ethyl-cellulose rumen-protected methionine enhances performance during the periparturient period and early lactation in Holstein dairy cows. J Dairy Sci. 2017;100:7455-67. https://doi.org/10.3168/jds.2017-12689   DOI
7 Lien EC, Lyssiotis CA, Cantley LC. Metabolic reprogramming by the PI3K-Akt-mTOR pathway in cancer. Recent Results Cancer Res. 2016;207:39-72. https://doi.org/10.1007/978-3-319-42118-6_3   DOI
8 Chan K, Busque SM, Sailer M, Stoeger C, Broer S, Daniel H, et al. Loss of function mutation of the Slc38a3 glutamine transporter reveals its critical role for amino acid metabolism in the liver, brain, and kidney. Pflugers Arch-Eur J Physiol. 2015;468:213-27. https://doi.org/10.1007/s00424-015-1742-0   DOI
9 Broer S. The SLC38 family of sodium-amino acid co-transporters. Pflugers Arch-Eur J Physiol. 2014;466:155-72. https://doi.org/10.1007/s00424-013-1393-y   DOI
10 Wang F, van Baal J, Ma L, Loor JJ, Wu ZL, Dijkstra J, et al. Short communication: relationship between lysine/methionine ratios and glucose levels and their effects on casein synthesis via activation of the mechanistic target of rapamycin signaling pathway in bovine mammary epithelial cells. J Dairy Sci. 2019;102:8127-33. https://doi.org/10.3168/jds.2018-15916   DOI
11 Kaufman JD, Kassube KR, Almeida RA, Rius AG. Short communication: high incubation temperature in bovine mammary epithelial cells reduced the activity of the mTOR signaling pathway. J Dairy Sci. 2018;101:7480-6. https://doi.org/10.3168/jds.2017-13958   DOI
12 Kim DH, Sarbassov DD, Ali SM, King JE, Latek RR, Erdjument-Bromage H, et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell. 2002;110:163-75. https://doi.org/10.1016/s0092-8674(02)00808-5   DOI
13 Lanks KW. Modulators of the eukaryotic heat shock response. Exp Cell Res. 1986;165:1-10. https://doi.org/10.1016/0014-4827(86)90528-8   DOI
14 Gross A, McDonnell JM, Korsmeyer SJ. BCL-2 family members and the mitochondria in apoptosis. Genes Dev. 1999;13:1899-911. https://doi.org/10.1101/gad.13.15.1899   DOI
15 Porter AG, Janicke RU. Emerging roles of caspase-3 in apoptosis. Cell Death Differ. 1999;6:99-104. https://doi.org/10.1038/sj.cdd.4400476   DOI
16 Manjari R, Yadav M, Ramesh K, Uniyal S, Rastogi SK, Sejian V, et al. HSP70 as a marker of heat and humidity stress in Tarai buffalo. Trop Anim Health Prod. 2015;47:111-6. https://doi.org/10.1007/s11250-014-0692-4   DOI
17 Melnik BC, John SM, Schmitz G. Milk is not just food but most likely a genetic transfection system activating mTORC1 signaling for postnatal growth. Nutr J. 2013;12:103. https://doi.org/10.1186/1475-2891-12-103   DOI
18 Vandesompele J, De Preger Katleen, Pattyn F, Poppe B, Van Roy N, De Paepe A, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002;3:research0034.1. https://doi.org/10.1186/gb-2002-3-7-research0034   DOI
19 Zhuo Y, Hua L, Feng B, Jiang X, Li J, Jiang D, et al. Fibroblast growth factor 21 coordinates adiponectin to mediate the beneficial effects of low-protein diet on primordial follicle reserve. EBioMedicine. 2019;41:623-35. https://doi.org/10.1016/j.ebiom.2019.02.020   DOI
20 Nygard AB, Jorgensen CB, Cirera S, Fredholm M. Selection of reference genes for gene expression studies in pig tissues using SYBR green qPCR. BMC Mol Biol. 2007;8:67. https://doi.org/10.1186/1471-2199-8-67   DOI
21 Cai M, Hu Y, Zheng T, He H, Xiao W, Liu B, et al. MicroRNA-216b inhibits heat stress-induced cell apoptosis by targeting Fas in bovine mammary epithelial cells. Cell Stress Chaperones. 2018;23:921-31. https://doi.org/10.1007/s12192-018-0899-9   DOI
22 Hu L, Chen Y, Cortes IM, Coleman DN, Dai H, Liang Y, et al. Supply of methionine and arginine alters phosphorylation of mechanistic target of rapamycin (mTOR), circadian clock proteins, and α-s1-casein abundance in bovine mammary epithelial cells. Food Funct. 2020;11:883-94. https://doi.org/10.1039/C9Fo02379H   DOI
23 Hay N, Sonenberg N. Upstream and downstream of mTOR. Genes Dev. 2004;18:1926-45. https://doi.org/10.1101/gad.1212704   DOI
24 Jefferies HBJ, Fumagalli S, Dennis PB, Reinhard C, Pearson RB, Thomas G. Rapamycin suppresses 5'TOP mRNA translation through inhibition of p70s6k. EMBO J. 1997;16:3693-704. https://doi.org/10.1093/emboj/16.12.3693   DOI
25 Lee C, Hristov AN, Cassidy TW, Heyler KS, Lapierre H, Varga GA, et al. Rumen-protected lysine, methionine, and histidine increase milk protein yield in dairy cows fed a metabolizable protein-deficient diet. J Dairy Sci. 2012;95:6042-56. https://doi.org/10.3168/jds.2012-5581   DOI
26 Tsiplakou E, Flemetakis E, Kouri ED, Karalias G, Sotirakoglou K, Zervas G. The effect of long term under- and over-feeding on the expression of six major milk protein genes in the mammary tissue of sheep. J Dairy Res. 2015;82:257-64. https://doi.org/10.1017/S0022029915000333   DOI
27 Dong X, Zhou Z, Saremi B, Helmbrecht A, Wang Z, Loor JJ. Varying the ratio of Lys:Met while maintaining the ratios of Thr:Phe, Lys:Thr, Lys:His, and Lys:Val alters mammary cellular metabolites, mammalian target of rapamycin signaling, and gene transcription. J Dairy Sci. 2018;101:1708-18. https://doi.org/10.3168/jds.2017-13351   DOI
28 Collier RJ, Stiening CM, Pollard BC, VanBaale MJ, Baumgard LH, Gentry PC, et al. Use of gene expression microarrays for evaluating environmental stress tolerance at the cellular level in cattle. J Anim Sci. 2006;84:E1-13. https://doi.org/10.2527/2006.8413_supplE1x   DOI
29 Wang Y, Yang C, Elsheikh NAH, Li C, Yang F, Wang G, et al. HO-1 reduces heat stress-induced apoptosis in bovine granulosa cells by suppressing oxidative stress. Aging (Albany NY). 2019;11:5535-47. https://doi.org/10.18632/aging.102136   DOI
30 Pate RT, Luchini D, Murphy MR, Cardoso FC. Effects of rumen-protected methionine on lactation performance and physiological variables during a heat stress challenge in lactating Holstein cows. J Dairy Sci. 2020;103:2800-13. https://doi.org/10.3168/jds.2019-17305   DOI
31 Reddi S, Kumar N, Vij R, Mada SB, Kapila S, Kapila R. Akt drives buffalo casein-derived novel peptide-mediated osteoblast differentiation. J Nutr Biochem. 2016;38:134-44. https://doi.org/10.1016/j.jnutbio.2016.08.003   DOI
32 Liu Z, Ezernieks V, Wang J, Arachchillage NW, Garner JB, Wales WJ, et al. Heat stress in dairy cattle alters lipid composition of milk. Sci Rep. 2017;7:961. https://doi.org/10.1038/s41598-017-01120-9   DOI
33 Noftsger S, St-Pierre NR. Supplementation of methionine and selection of highly digestible rumen undegradable protein to improve nitrogen efficiency for milk production. J Dairy Sci. 2003;86:958-69. https://doi.org/10.3168/jds.S0022-0302(03)73679-0   DOI
34 Hua L, Zhuo Y, Jiang D, Li J, Huang X, Zhu Y, et al. Identification of hepatic fibroblast growth factor 21 as a mediator in 17β-estradiol-induced white adipose tissue browning. FASEB J. 2018;32:5602-11. https://doi.org/10.1096/fj.201800240R   DOI
35 Zou Y, Shao J, Li Y, Zhao FQ, Liu JX, Liu H. Protective effects of inorganic and organic selenium on heat stress in bovine mammary epithelial cells. Oxid Med Cell Longev. 2019;2019:1503478. https://doi.org/10.1155/2019/1503478   DOI
36 Beere HM. Death versus survival: functional interaction between the apoptotic and stress-inducible heat shock protein pathways. J Clin Invest. 2005;115:2633-9. https://doi.org/10.1172/JCI26471   DOI
37 Bellmann K, Charette SJ, Nadeau PJ, Poirier DJ, Loranger A, Landry J. The mechanism whereby heat shock induces apoptosis depends on the innate sensitivity of cells to stress. Cell Stress Chaperones. 2010;15:101-13. https://doi.org/10.1007/s12192-009-0126-9   DOI
38 Jedrzejczak M, Szatkowska I. Bovine mammary epithelial cell cultures for the study of mammary gland functions. In Vitro Cell Dev Biol Anim. 2014;50:389-98. https://doi.org/10.1007/s11626-013-9711-4   DOI
39 Hundal HS, Taylor PM. Amino acid transceptors: gate keepers of nutrient exchange and regulators of nutrient signaling. Am J Physiol Endocrinol Metab. 2009;296:E603-13. https://doi.org/10.1152/ajpendo.91002.2008   DOI
40 Hemmings BA, Restuccia DF. PI3K-PKB/Akt pathway. Cold Spring Harbor Perspect Biol. 2012;4:a011189. https://doi.org/10.1101/cshperspect.a011189   DOI
41 Taylor PM. Role of amino acid transporters in amino acid sensing. Am J Clin Nutr. 2014;99:223S-30S. https://doi.org/10.3945/ajcn.113.070086   DOI
42 Pirkkala L, Nykanen P, Sistonen L. Roles of the heat shock transcription factors in regulation of the heat shock response and beyond. FASEB J. 2001;15:1118-31. https://doi.org/10.1096/fj00-0294rev   DOI
43 Rosario FJ, Dimasuay KG, Kanai Y, Powell TL, Jansson T. Regulation of amino acid transporter trafficking by mTORC1 in primary human trophoblast cells is mediated by the ubiquitin ligase Nedd4-2. Clin Sci (Lond). 2016;130:499-512. https://doi.org/10.1042/CS20150554   DOI
44 Beede DK, Collier RJ. Potential nutritional strategies for intensively managed cattle during thermal stress. J Anim Sci. 1986;62:543-54. https://doi.org/10.2527/jas1986.622543x   DOI
45 Mu T, Kong GH, Han ZY, Li HX. Cytoprotection of methionine on hyperthermia-induced damage in bovine mammary epithelial cells. Cell Biol Int. 2014;38:971-6. https://doi.org/10.1002/cbin.10271   DOI
46 Han ZY, Mu T, Yang Z. Methionine protects against hyperthermia-induced cell injury in cultured bovine mammary epithelial cells. Cell Stress Chaperones. 2015;20:109-20. https://doi.org/10.1007/s12192-014-0530-7   DOI
47 Zhu LH, Xu JX, Zhu SW, Cai X, Yang SF, Chen XL, et al. Gene expression profiling analysis reveals weaning-induced cell cycle arrest and apoptosis in the small intestine of pigs. J Anim Sci. 2014;92:996-1006. https://doi.org/10.2527/jas.2013-7551   DOI
48 West JW. Effects of heat-stress on production in dairy cattle. J Dairy Sci. 2003;86:2131-44. https://doi.org/10.3168/jds.S0022-0302(03)73803-X   DOI
49 Fuquay JW. Heat stress as it affects animal production. J Anim Sci. 1981;52:164-74. https://doi.org/10.2527/jas1981.521164x   DOI
50 Cowley FC, Barber DG, Houlihan AV, Poppi DP. Immediate and residual effects of heat stress and restricted intake on milk protein and casein composition and energy metabolism. J Dairy Sci. 2015;98:2356-68. https://doi.org/10.3168/jds.2014-8442   DOI
51 Gao ST, Guo J, Quan SY, Nan XM, Fernandez MVS, Baumgard LH, et al. The effects of heat stress on protein metabolism in lactating Holstein cows. J Dairy Sci. 2017;100:5040-9. https://doi.org/10.3168/jds.2016-11913   DOI
52 Hu H, Zhang Y, Zheng N, Cheng J, Wang J. The effect of heat stress on gene expression and synthesis of heat-shock and milk proteins in bovine mammary epithelial cells. Anim Sci J. 2016;87:84-91. https://doi.org/10.1111/asj.12375   DOI
53 Salama AAK, Duque M, Wang L, Shahzad K, Olivera M, Loor JJ. Enhanced supply of methionine or arginine alters mechanistic target of rapamycin signaling proteins, messenger RNA, and microRNA abundance in heat-stressed bovine mammary epithelial cells in vitro. J Dairy Sci. 2019;102:2469-80. https://doi.org/10.3168/jds.2018-15219   DOI
54 Wang S, Tsun ZY, Wolfson RL, Shen K, Wyant GA, Plovanich ME, et al. Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1. Science. 2015;347:188-94. https://doi.org/10.1126/science.1257132   DOI
55 Dado-Senn B, Skibiel AL, Fabris TF, Zhang Y, Dahl GE, Penagaricano F, et al. RNA-Seq reveals novel genes and pathways involved in bovine mammary involution during the dry period and under environmental heat stress. Sci Rep. 2018;8:11096. https://doi.org/10.1038/s41598-018-29420-8   DOI
56 Xiong Y, Yin Q, Jin E, Chen H, He S. Selenium attenuates chronic heat stress-induced apoptosis via the inhibition of endoplasmic reticulum stress in mouse granulosa cells. Molecules. 2020;25:557. https://doi.org/10.3390/molecules25030557   DOI
57 Li L, Sun Y, Wu J, Li X, Luo M, Wang G. The global effect of heat on gene expression in cultured bovine mammary epithelial cells. Cell Stress Chaperones. 2015;20:381-9. https://doi.org/10.1007/s12192-014-0559-7   DOI
58 Ye J, Palm W, Peng M, King B, Lindsten T, Li MO, et al. GCN2 sustains mTORC1 suppression upon amino acid deprivation by inducing Sestrin2. Genes Dev. 2015;29:2331-6. https://doi.org/10.1101/gad.269324.115   DOI
59 Rius AG. Invited review: adaptations of protein and amino acid metabolism to heat stress in dairy cows and other livestock species. Appl Anim Sci. 2019;35:39-48. https://doi.org/10.15232/aas.2018-01805   DOI
60 Zhang J, Zhao D, Yi D, Wu M, Chen H, Wu T, et al. Microarray analysis reveals the inhibition of intestinal expression of nutrient transporters in piglets infected with porcine epidemic diarrhea virus. Sci Rep. 2019;9:19798. https://doi.org/10.1038/s41598-019-56391-1   DOI
61 Sonna LA, Fujita J, Gaffin SL, Lilly CM. Invited review: effects of heat and cold stress on mammalian gene expression. J Appl Physiol. 2002;92:1725-42. https://doi.org/10.1152/japplphysiol.01143.2001   DOI
62 Wan T, Zhou X, Chen G, An H, Chen T, Zhang W, et al. Novel heat shock protein Hsp70L1 activates dendritic cells and acts as a Th1 polarizing adjuvant. Blood. 2004;103:1747-54. https://doi.org/10.1182/blood-2003-08-2828   DOI
63 Feng B, Huang X, Jiang D, Hua L, Zhuo Y, Wu D. Endoplasmic reticulum stress inducer tunicamycin alters hepatic energy homeostasis in mice. Int J Mol Sci. 2017;18:1710. https://doi.org/10.3390/ijms18081710   DOI
64 Bionaz M, Loor JJ. Gene networks driving bovine mammary protein synthesis during the lactation cycle. Bioinf Biol Insights. 2011;5:83-98. https://doi.org/10.4137/BBI.S7003   DOI
65 Wagner CA, Hernando N, Forster IC, Biber J. The SLC34 family of sodium-dependent phosphate transporters. Pflug Arch-Eur J Physiol. 2014;466:139-53. https://doi.org/10.1007/s00424-013-1418-6   DOI
66 Zheng L, Zhang W, Zhou Y, Li F, Wei H, Peng J. Recent advances in understanding amino acid sensing mechanisms that regulate mTORC1. Int J Mol Sci. 2016;17:1636. https://doi.org/10.3390/ijms17101636   DOI
67 Hou Y, Wang L, Yi D, Ding B, Yang Z, Li J, et al. N-acetylcysteine reduces inflammation in the small intestine by regulating redox, EGF and TLR4 signaling. Amino Acids. 2013;45:513-22. https://doi.org/10.1007/s00726-012-1295-x   DOI