Browse > Article
http://dx.doi.org/10.5187/jast.2021.e37

Genetic assessment of BoLA-DRB3 polymorphisms by comparing Bangladesh, Ethiopian, and Korean cattle  

Mandefro, Ayele (Department of Biotechnology, Addis Ababa Science and Technology University)
Sisay, Tesfaye (Institute of Biotechnology, Addis Ababa University)
Edea, Zewdu (Department of Animal Science, Chungbuk National University)
Uzzaman, Md. Rasel (Department of Animal Science, Chungbuk National University)
Kim, Kwan-Suk (Department of Animal Science, Chungbuk National University)
Dadi, Hailu (Ethiopian Biotechnology Institute)
Publication Information
Journal of Animal Science and Technology / v.63, no.2, 2021 , pp. 248-261 More about this Journal
Abstract
Attributable to their major function in pathogen recognition, the use of bovine leukocyte antigens (BoLA) as disease markers in immunological traits in cattle is well established. However, limited report exists on polymorphism of the BoLA gene in zebu cattle breeds by high resolution typing methods. Thus, we used a polymerase chain reaction sequence-based typing (PCR-SBT) method to sequence exon 2 of the BoLA class II DRB3 gene from 100 animals (Boran, n = 13; Sheko, n = 20; Fogera, n = 16; Horro, n = 19), Hanwoo cattle (n = 18) and Bangladesh Red Chittagong zebu (n = 14). Out of the 59 detected alleles, 43 were already deposited under the Immuno Polymorphism Database for major histocompatibility complex (IPD-MHC) while 16 were unique to this study. Assessment of the level of genetic variability at the population and sequence levels with genetic distance in the breeds considered in this study showed that Zebu breeds had a gene diversity score greater than 0.752, nucleotide diversity score greater than 0.152, and mean number of pairwise differences higher than 14, being very comparable to those investigated for other cattle breeds. Regarding neutrality tests analyzed, we investigated that all the breeds except Hanwoo had an excess number of alleles and could be expected from a recent population expansion or genetic hitchhiking. Howbeit, the observed heterozygosity was not significantly (p < 0.05) higher than the expected heterozygosity. The Hardy Weinberg equilibrium (HWE) analysis revealed non-significant excess of heterozygote animals, indicative of plausible over-dominant selection. The pairwise FST values suggested a low genetic variation among all the breeds (FST = 0.056; p < 0.05), besides the rooting from the evolutionary or domestication history of the cattle. No detached clade was observed in the evolutionary divergence study of the BoLA-DRB3 gene, inferred from the phylogenetic tree based on the maximum likelihood model. The investigation herein indicated the clear differences in BoLA-DRB3 gene variability between African and Asian cattle breeds.
Keywords
BoLA-DRB3; Cattle breeds; Sequence based typing (SBT); Genetic diversity; Alleles;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Andersson L, Bohme J, Peterson PA, Rask L. Genomic hybridization of bovine class II major histocompatibility genes: 2. polymorphism of DR genes and linkage disequilibrium in the DQ-DR region. Anim Genet. 1986;17:295-304. https://doi.org/10.1111/j.1365-2052.1986.tb00723.x   DOI
2 Groenen AM, Van Der Poel JJ, Dijkhof RJM, Giphart MJ. Cloning of the bovine major histocompatibility complex class II genes. Anim Genet. 1989;20:267-78. https://doi.org/10.1111/j.1365-2052.1989.tb00867.x   DOI
3 Groenen MAM, van der Poel JJ, Dijkhof RJ, Giphart MJ. The nucleotide sequence of bovine MHC class II DQB and DRB genes. Immunogenetics 1990;31:37-44. https://doi.org/10.1007/BF00702487   DOI
4 Ojong BW, Sacca E, Bessong P, Piasentier E. Prevalence of bovine dermatophilosis and disease-associated alleles in zebu Goudali cattle and their Italian Simmental crosses ranching in the western highland plateau savannah of Cameroon. Trop Anim Health Prod. 2016;48:1329-35. https://doi.org/10.1007/s11250-016-1097-3   DOI
5 Takeshima SN, Ohno A, Aida Y. Bovine leukemia virus proviral load is more strongly associated with bovine major histocompatibility complex class II DRB3 polymorphism than with DQA1 polymorphism in Holstein cow in Japan. Retrovirology. 2019;16:1-6. https://doi.org/10.1186/s12977-019-0476-z   DOI
6 Magee DA, MacHugh DE, Edwards CJ. Interrogation of modern and ancient genomes reveals the complex domestic history of cattle. Anin Front. 2014;4:7-22. https://doi.org/10.2527/af.2014-0017   DOI
7 Hughes AL, Yeager M. Natural selection at major histocompatibility complex loci of vertebrates. Annu Rev Genet. 1998;32:415-35. https://doi.org/10.1146/annurev.genet.32.1.415   DOI
8 Radwan J, Babik W, Kaufman J, Lenz TL, Winternitz J. Advances in the evolutionary understanding of MHC polymorphism. Trends Genet. 2020;36:298-311. https://doi.org/10.1016/j.tig.2020.01.008   DOI
9 Porto Neto LR, Jonsson NN, D'Occhio MJ, Barendse W. Molecular genetic approaches for identifying the basis of variation in resistance to tick infestation in cattle. Vet Parasitol. 2011;180:165-72. https://doi.org/10.1016/j.vetpar.2011.05.048   DOI
10 Adefnwa MA, Peters SO, Agaviezor BO, Wheto M, Adekoya KO, Okpeku M, et al. Identification of single nucleotide polymorphisms in the agouti signaling protein (ASIP) gene in some goat breeds in tropical and temperate climates. Mol Biol Rep. 2013;40:4447-57. https://doi.org/10.1007/s11033-013-2535-1   DOI
11 Bohorquez MD, Ordonez D, Suarez CF, Vicente B, Vieira C, Lopez-Aban J, et al. Major histocompatibility complex Class II (DRB3) genetic diversity in Spanish Morucha and Colombian Normande cattle compared to taurine and zebu populations. Fron Genet. 2020;10:1293. https://doi.org/10.3389/fgene.2019.01293   DOI
12 Phillips KP, Cable J, Mohammed RS, Herdegen-Radwan M, Raubic J, Przesmycka KJ, et al. Immunogenetic novelty confers a selective advantage in host-pathogen coevolution. Proc Natl Acad Sci USA. 2018;115:1552-7. https://doi.org/10.5061/dryad.72262   DOI
13 Hameed KGA, Grazyna Sender G, Mayntz M. Major histocompatibility complex polymorphism and mastitis resistance: a review. Anim Sci Pap Rep. 2006;24:11-25.
14 Sigurdardottir S, Borsch C, Gustafsson K, Andersson L. Cloning and sequence analysis of 14 DRB alleles of the bovine major histocompatibility complex by using the polymerase chain reaction. Anim Genet. 1991;22:199-209. https://doi.org/10.1111/j.1365-2052.1991.tb00670.x   DOI
15 Takeshima SN, Corbi-Botto C, Giovambattista G, Aida Y. Genetic diversity of BoLA-DRB3 in South American Zebu cattle populations. BMC Genet. 2018;19:1-13. https://doi.org/10.1186/s12863-018-0618-7   DOI
16 Maccari G, Robinson J, Ballingall K, Guethlein LA, Grimholt U, Kaufman J, et al. IPD-MHC 2.0: an improved inter-species database for the study of the major histocompatibility complex. Nucleic Acids Res. 2017;45:860-4. https://doi.org/10.1093/nar/gkw1050   DOI
17 Welderufael BG, Lovendahl P, de Koning DJ, Janss LLG, Fikse WF. Genome-wide association study for susceptibility to and recoverability from mastitis in Danish holstein cows. Fron Genet. 2018;9:141. https://doi.org/10.3389/fgene.2018.00141   DOI
18 Jolanta O, Piotr U, Grazyna S, Adrianna P, Marek L. Frequency of BoLA-DRB3 alleles in Polish Holstein Friesian cattle. Anim Sci Pap Rep. 2012;30:91-101.
19 Msalya G, Kim ES, Laisser ELK, Kipanyula MJ, Karimuribo ED, Kusiluka LJM, et al. Determination of genetic structure and signatures of selection in three strains of Tanzania Shorthorn Zebu, Boran and Friesian Cattle by genome-wide SNP analyses. PLOS ONE 2017;12:e0171088. https://doi.org/10.1371/journal.pone.0171088   DOI
20 Takeshima S, Saitou N, Morita M, Inoko H, Aida Y. The diversity of bovine MHC class II DRB3 genes in Japanese Black, Japanese Shorthorn, Jersey and Holstein cattle in Japan. Gene. 2003;316:111-8. https://doi.org/10.1016/s0378-1119(03)00744-3   DOI
21 Bradley DG, Loftus RT, Cunningham P, MacHugh DE. Genetics and domestic cattle origins. Evol Anthropol. 1998;6:79-86. https://doi.org/10.1002/(SICI)1520-6505(1998)6:3<79::AID-EVAN2>3.0.CO;2-R   DOI
22 Bahbahani H, Salim B, Almathen F, Al Enezi F, Mwacharo JM, Hanotte O. Signatures of positive selection in African Butana and Kenana dairy zebu cattle. PLOS ONE. 2018;13:e0190446. https://doi.org/10.1371/journal.pone.0190446   DOI
23 Edea Z, Dadi H, Kim SW, Dessie T, Lee T, Kim H, et al. Genetic diversity, population structure and relationships in indigenous cattle populations of Ethiopia and Korean Hanwoo breeds using SNP markers. Front Genet. 2013;4:35. https://doi.org/10.3389/fgene.2013.00035   DOI
24 Takeshima SN, Ikegami M, Morita M, Nakai Y, Aida Y. Identification of new cattle Bo-LA-DRB3 alleles by sequence-based typing. Immunogenetics. 2001;53:74-81. https://doi.org/10.1007/s002510000293   DOI
25 Jeong HJ, Bhuiyan MSA, Lee JS, Yu SL, Sang BC, Yoon D. Characterization of BoLA-DRB3.2 alleles in Hanwoo (Korean cattle) by sequence based typing (SBT). Asian Australas J Anim Sci. 2007;20:1791-7. https://doi.org/10.5713/ajas.2007.1791   DOI
26 Suprovych TM, Suprovych MP, Koval TV, Karchevska TM, Chepurna VA, Chornyi IO, et al. BoLA-DRB3 gene as a marker of susceptibility and resistance of the Ukrainian blackpied and red-pied dairy breeds to mastitis. Regul Mech Biosyst. 2018;9:363-8. https://doi.org/10.15421/021853   DOI
27 Van Eijk MJT, Stewart-Haynes JA, Lewin HA. Extensive polymorphism of the BoLA-DRB3 gene distinguished by PCR-RFLP. Anim Genet. 1992;23:483-96. https://doi.org/10.1111/j.1365-2052.1992.tb00168.x   DOI
28 Lee BY, Hur, TY, Jung YH, Kim H. Identification of BoLA-DRB3.2 alleles in Korean native cattle (Hanwoo) and Holstein populations using a next generation sequencer. Anim Genet. 2011;43:438-41. https://doi.org/10.1111/j.1365-2052.2011.02264.x   DOI
29 Bhuiyan AKFH, Shahjalal M, Islam MN, Rahman AKMA, Keown JF, Van Vleck LD, et al. Characterization, conservation and improvement of Red Chittagong Cattle of Bangladesh. Bangladesh Agric Univ Res Sys Program 2005:13-21.
30 Mekuriaw G, Kebede A. A review on indigenous cattle genetic resources in Ethiopia: adaptation, status and survival. Online J Anim Feed Res. 2015;5:125-37.
31 Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, et al. Clustal W and Clustal X version 2.0. Bioinforormatics 2007;23:2947-8. https://doi.org/10.1093/bioinformatics/btm404   DOI
32 Excoffier L, Lischer HEL. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Res. 2010;10:564-7. https://doi.org/10.1111/j.1755 0998.2010.02847.x   DOI
33 Weir BS, Cockerham CC. Estimating F-statistics for the analysis of population structure. Evolution. 1984;38:1358-70. https://doi.org/10.2307/2408641   DOI
34 Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1989;123:585-95. https://doi.org/10.1093/genetics/123.3.585   DOI
35 Librado P, Rozas J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 2009;25:1451-2. https://doi.org/10.1093/bioinformatics/btp187   DOI
36 Muhire BM, Varsani A, Martin DP. SDT: a virus classification tool based on pairwise sequence alignment and identity calculation. PLOS ONE 2014;9:e108277. https://doi.org/10.1371/journal.pone.0108277   DOI
37 Peters SO, Hussain T, Adenaike AS, Adeleke MA, De Donato M, Hazzard J, et al. Genetic diversity of bovine major histocompatibility complex class II DRB3 locus in cattle breeds from Asia compared to those from Africa and America. J Genom. 2018;6:88-97. https://doi.org/10.7150/jgen.26491   DOI
38 Fu YX. Statistical tests of neutrality of mutations against population growth hitchhiking, and background selection. Genetics. 1997;147:915-25. https://doi.org/10.1093/genetics/147.2.915   DOI
39 Kimura M. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 1980;16:111-20. https://doi.org/10.1007/BF01731581   DOI
40 Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35:1547-9. https://doi.org/10.1093/molbev/msy096   DOI
41 Behl JD, Verma NK, Tyagi N, Mishra P, Behl R, Joshi BK. The major histocompatibility complex in bovines: a review. Int Sch Res Notices. 2012;2012:1-12. https://doi.org10.5402/2012/872710   DOI
42 Nei M, Kumar S. Molecular evolution and phylogenetics. New York, NY: Oxford University Press; 2000.
43 Rousset F. Genepop'007: a complete re-implementation of the genepop software for windows and Linux. Mol Ecol Resour. 2008;8:103-6. https://doi.org/10.1111/j.1471-8286.2007.01931.x   DOI
44 Bandelt H, Forster P, Rohl A. Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol. 1999;16:37-48. https://doi.org/10.1093/oxfordjournals.molbev.a026036   DOI
45 Takeshima SN, Miyasaka T, Matsumoto Y, Xue G, de la Barra Diaz V, Rogberg Munoz A, et al. Assessment of biodiversity in Chilean cattle using the distribution of major histocompatibility complex class II BoLA DRB3 allele. Tissue Antigens. 2015;85:35-44. https://doi.org/10.1111/tan.12481   DOI
46 Inick DL, Msalya G, Kipanyula M, Karimuribo E, Chenyambuga S. Polymorphisms of BoLA-DRB 3.2 gene and associated genetic relationships among four strains of Tanzania shorthorn zebu cattle. J Anim Breed Genom. 2018;2:245-56. https://doi.org/10.12972/jabng.201800XX   DOI
47 Takeshima S, Nakai Y, Ohta M, Aida Y. Short communication: characterization of DRB3 alleles in the MHC of Japanese shorthorn cattle by polymerase chain reaction-sequence-based typing. J Dairy Sci. 2002;85:1630-2. https://doi.org/10.3168/jds.S0022-0302(02)74234-3   DOI
48 Nassiry MR, Shahroodi FE, Mosafer J, Mohammadi A, Manshad E, Ghazanfari S, et al. Analysis and frequency of bovine lymphocyte antigen (BoLA-DRB3) alleles in Iranian Holstein cattle. Russ J Genet. 2005;41:817-22. https://doi.org/10.1134/S1022795409020100   DOI
49 Hedrick PW. Genetics of complex polymorphisms: parasites and the maintenance of the major histocompatibility complex variation. In: Singh RS, Krimpas CB, editors. Evolutionary genetics from molecules to morphology. Cambridge, UK: Cambridge University Press; 2000. p. 204-34.