Browse > Article
http://dx.doi.org/10.5187/JAST.2011.53.2.89

Development of High Meat Quality Using Microsatellite Markers in Berkshire Pigs  

Lee, Yong-Hwa (Swine Science and Technology Center, Gyeong Nam National University of Science and Technology)
Kwon, Seul-Gi (Swine Science and Technology Center, Gyeong Nam National University of Science and Technology)
Park, Da-Hye (Swine Science and Technology Center, Gyeong Nam National University of Science and Technology)
Kwon, Eun-Jung (Swine Science and Technology Center, Gyeong Nam National University of Science and Technology)
Cho, Eun-Seok (Swine Science and Technology Center, Gyeong Nam National University of Science and Technology)
Bang, Woo-Young (Swine Science and Technology Center, Gyeong Nam National University of Science and Technology)
Park, Hwa-Chun (Pig Breeding Company)
Park, Beom-Young (National Institute of Animal Science, RDA)
Choi, Jong-Soon (Korea Basic Science Institute)
Kim, Chul-Wook (Swine Science and Technology Center, Gyeong Nam National University of Science and Technology)
Publication Information
Journal of Animal Science and Technology / v.53, no.2, 2011 , pp. 89-97 More about this Journal
Abstract
In this study, the efficiency of microsatellite (MS) markers for pork quality was examined and further, their suitability to domestic pork industry also was verified, by measuring meat quality parameters of Berkshire breeds. A total of 323 pigs of Berkshire breeds were slaughtered and subjected to meat quality evaluation. In addition, the genomic DNAs from blood samples of slaughtered pigs were used for genotyping analysis of 50 MS markers. The results revealed that Berkshire breeds have excellent meat quality, compared with the popular domestic breeds such as Duroc, Yorkshire, and Landrace. Noticeably, the Berkshire breeds exhibited a significant post-mortem pH24hr ($5.88{\pm}0.01$) and fat content ($2.878{\pm}0.06$). Through the linkage analysis between MS markers, 14 MS markers showed significant association with meat quality traits (p<0.05). Maximum significant differences of 0.55 pH24hr value and 2.04% fat content were observed between the highest and lowest allele populations. If these 14 MS markers are applied to the pork quality diagnosis kit, the synergistic effect can be expected in meat quality parameters such as meat color, fat content, pH 24 hr, cooking loss, drip loss and water-holding capacity.
Keywords
Meat quality; Berkshire; MS markers;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Rothschild, M. F. and Soller, M. 1997. Candidate gene analysis to detect genes controlling traits of economic importance in domestic livestock. Probe 8:13-20.
2 SAS. 2002. $SAS{\circledR}$ User’s Guide: Statistics. Version 9th, Statistical Analysis System Institute Inc., Cary, NC, USA.
3 Sellier, P. 1998. Genetics of meat and carcass traits. In : Rothchild, M. F., Ruvinsky, A. (Eds.), The genetics of the pig. CAB International, 463-510.
4 Takeda, H., Caiment, F., Smit, M., Hiard, S., Tordoir, X., Cockett,N., Georges, M. and Cardlier, C. 2006. The callipyge mutation enhances bidirectional long-range DLK1-GTL2 intergenic transcription in cis. Proceedings of the National Academy of Sciences of the United States of America 103:8119-8124.   DOI   ScienceOn
5 van Wijk, H. J., Dibbits, B., Baron, E. E., Brings, A. D., Harlizius,B., Groenen, M. A. M., Knol, E. F. and Bovenhuis, H. 2006.Identification of quantitative trait loci for carcass composition and pork quality traits in a commercial finishing cross. J. Anim. Sci. 84:789-799.   DOI
6 Winter, A., Kramer, W., Werner, F. A., Kollers, S., Kata, S.,Durstewitz, G., Buitkamp, J., Womack, J. E., Thaller, G. andFries, R. 2002. Association of a lysine-232/alanine polymorphism in a bovine gene encoding acyl-CoA:diacylglycerol acyltransferase (DGAT1) with variation at a quantitative trait locus for milk fat content. Proceedings of the National Academy of Sciences of the United States of America 99:9300-9305.   DOI   ScienceOn
7 김형주. 2005. 브랜드 돈육 생산을 위한 종돈의 선택과 활용, 종돈개량 p66-70.
8 서강석. 2009. 육질향상을 위한 돼지개량, 종돈개량 p53-57.
9 종돈개량. 2005. 품종별 육질 비교 평가, Breeding & A. I. Technique.
10 한국육류수출입협회. 2006. 돼지고기 소비실태조사
11 Liu, G., Jennen, D. G. J., Tholen, E., Juengst, H., KleinWachter, T.,Holker, M., Tesfaye, D., Ün, G., Schreinemachers, H.-J., Murani,E., Ponsuksili, S., Kim, J.-J., Schellander K. and Wimmers. K.2007. A genome scan reveals QTL for growth, fatness, leanness and meat quality in a Duroc-Pietrain resource population. Animal Genetics, 38, 241-252.   DOI   ScienceOn
12 Looft, C., Milan, D., Jeon, J. T., Paul, S., Reinsch, N., Gaillard, C.R., Rey, V., Amarger, V., Robic, A., Kalm, E., Chardon, P. and Andersson, L. 2000. A high-density linkage map of the RN region in pigs. Genet. Sel. Evol. 32:321-329.   DOI   ScienceOn
13 Malek, M., Dekkers, J. C., Lee, H. K., Baas, T. J., Prusa, K., Huff-Lonergan, E. and Rothschild, M. F. 2001. A molecular genome scan analysis to dentify chromosomal regions influencing economic traits in the pig. II. Meat and muscle composition. Mammalian Genome 12:637-645.   DOI   ScienceOn
14 Milan, D., Jeon, J.-T., Looft, C., Amarger, V., Robic, A., Thelander,M., Claire, R. G., Pau, S., Iannuccelli, N., Rask, L., Ronne, H.,Lundström, K., Reinsch, N., Gellin, J., Kalm, E., Le Roy, P., Chardon, P. and Andersson, L. 2000. A mutation in PRKAG3 associated with excess glycogen content in pig skeletal muscle. Science 288:1248-1251.   DOI   ScienceOn
15 Offer, G. 1991. Modeling of the formation pale, soft and exudative meat: Effects of chilling regime and rate and extent of glycolysis. Meat Science 30:157-184.   DOI   ScienceOn
16 Park, B. Y., Cho, S. H., Yoo, Y. M., Ko, J. J., Kim, J. H., Chae, H.S., Ahn, J. N., Lee, J. M., Kim, Y. K. and Yoon, S. K. 2001. Animal products and processing : Effect of carcass temperature at 3h post-mortem on pork quality. J. Anim. Sci. Technol (Kor). 43:949-954.
17 Rohrer, G. A., Thallman, R. M., Shackelford, S., Wheeler, T. andKoohmaraie, M. 2005. A genome scan for loci affecting pork quality in a Duroc-Landrace F2 population. Animal Genetics 37: 17-27.
18 Rothschild, M. F. 2004. Porcine genomics delivers new tools and results: This little piggy did more than just go to market. Genetical Research 83:1-6.   DOI   ScienceOn
19 Harmegnies, N., Davin, F., De Smet, S., Buys, N., Georges, M. and Coppieters, W. 2006. Results of a whole-genome quantitative trait locus scan for growth, carcass composition and meat quality in a porcine four-way cross. Animal Genetics 37:543-553.   DOI   ScienceOn
20 Hou, J. G., Li, J. Q., Chen, Y. S. and Wang, C. 2003. Relationships between microsatellite DNA markers and pork quality traits. Journal of south china agricultural university(Natural Science Edition), 24:63-66.
21 Huff-Lonergan, E., Baas, T. J., Malek, M., Dekkers, J. C. M. andPursa, K. 2002. Correlations among selected pork quality traits. Journal of Animal Science 80(3):617-627.   DOI
22 de Koning, D. J., Harlizius, B., Rattink, A. P., Groenen, M. A.,Brascamp, E. W. and van Arendonk, J. A. 2001. Detection and characterization of quantitiative trait loci for meat quality traits in pigs. Journal of Animal Scienece 79:2812-2819.   DOI
23 Laakkone, E., Wellington, G. H. and Skerbon, J. W. 1970. Low temperature longtime heating of bovine. I. Changes in tenderness, water binding capacity, pH and amount of water-soluble component. J. Food. Sci. 35:175-177.   DOI
24 Le Roy, P., Naveau, J., Elsen, J. M. and Sellier, P. 1990. Evidence for a new major gene influencing meat quality in pigs. Genetics Research 55:33-40.   DOI   ScienceOn
25 Bertram, H. C., Petersen, J. S. and Andersen, H. J. 2000. Relationship between RN- genotype and drip loss in meat from Danish pigs. Meat Science 56:49-55.   DOI   ScienceOn
26 Liu, G., Jennen, D. G. J., Tholen, E., Juengst, H., KleinWachter, T., Holker, M., Tesfaye, D., Ün, G., Schreinemachers, H.-J., Murani, E., Ponsuksili, S., Kim, Schellander, K. and van Laere, A. S., Nguyen, M., Braunschweig, M., Nezer, C., Collette, C., Moreau, L., Archibald, A. L., Haley, C. S., Buys, N., Tally, M., Andersson, G., Georges, M. and Andersson, L. 2003. A regulatory mutation in IGF2 causes a major QTL effect on muscle growth in the pig. Nature 425: 832-836.   DOI   ScienceOn
27 Liu, G., Jennen, D. G. J., Tholen, E., Juengst, H., KleinWachter, T.,Holker, M., Tesfaye, D., Ün, G., Schreinemachers, H.-J., Murani,E., Ponsuksili, S., Kim, J.-J., Schellander, K. and Wimmers. K.2006. A genome scan reveals QTL for growth, fatness, leanness and meat quality in a Duroc-Pietrain resource population. Animal Genetics. 37, 17-27.   DOI   ScienceOn
28 Anderson. S., Aldana, S., Beggs, M., Birkey, j., Conquest, A., Conway, R., Hemminger, T., Herrick, j., Hurley, C., Ionita, C.,Longbind, j., McMaignal, S., Milu, A., Mitchell, T., Nanke, K.,Perez, A., Phelps, M., Reitz, J., Salazer, a., Shinkle, T. Strampe,M., Van Horn, K., Williams, J., Wipperfurth, C., Zelten, S. andZerr, S. 2007. Determination of fat, moisture, and protein in meat and meat products by using the FOSS $FoodScan^{tm}$ Near-Infrared Spectrophotometer with FOSS artificial neural network calibration model and associated (4):1073-1082.
29 Girard, J. P., Goutefongea, R., Monin, G. and Touraille, C. 1986. In: Le porc et son elevage, (Perez, J. M., Mornet, P. and Rerat, A. (Eds)), Maloine, Paris. p.461.
30 Bidanel, J. P. and Rothschild, M. F. 2002. Current status of quantitative trait locus mapping in pigs. Pig News and Information 23: 39N-53N.
31 Grisart, B., Coppieters, W., Farnir, F., Karim, L., Ford, C., Berzi, P.,Cambisano, N., Mni, M., Reid, S., Simon, P., Spelman, R.,Georges, M. and Snell, R. 2002. Positional candidate cloning of a QTL in dairy cattle: Identification of a missense mutation in the bovine DGAT1 gene with major effect on milk yield and composition. Genome Research 12: 222-231.   DOI   ScienceOn