Browse > Article
http://dx.doi.org/10.5187/JAST.2009.51.6.493

Expressional Comparison of Glucose Cotransporter Isoforms in the Rat Epididymis During Postnatal Development  

Lee, Dong-Mok (School of Biotechnology, Yeungnam University)
Seo, Hee-Jung (Department of Biochemistry and Molecular Biology and Medical Sciences Research Institute, Eulji University)
Son, Chan-Wok (Department of Biochemistry and Molecular Biology and Medical Sciences Research Institute, Eulji University)
Lee, Yong-Ho (Department of Biomedical Science, Catholic University of Daegu)
Choi, In-Ho (School of Biotechnology, Yeungnam University)
Chun, Tae-Hoon (School of Life Sciences and Biotechnology, Korea University)
Cheon, Yong-Pil (School of Life Sciences and Chemistry, Institute of Basic Sciences, Sungshin Women's University)
Lee, Ki-Ho (Department of Biochemistry and Molecular Biology and Medical Sciences Research Institute, Eulji University)
Publication Information
Journal of Animal Science and Technology / v.51, no.6, 2009 , pp. 493-502 More about this Journal
Abstract
Glucose is a major source of metabolic fuel and lipid and protein syntheses. Transport of glucose into the cell is regulated by an action of glucose transport.associated transporters, especially solute carriers 2A (Slc2a, protein symbol GLUT). The present study was focused on examination of mRNA expression of various Slc2a isoforms in the epididymis during postnatal development. Total RNAs isolated from different epididymal segments (caput, corpus, and caudal epididymis) were utilized for real-time polymerase chain reaction analyses. Results showed that Slc2a 1, 3, 4, 5, and 8 were expressed in the entire epididymal regions. In addition, the abundance of these Slc2a isoforms' transcripts was different within each epididymal regions. Moreover, the present study showed differential expression of these Slc2a isoforms among different epididymal segments according to postnatal ages. The current study suggests that glucose transport in the epididymis via various Slc2a isoforms would be necessary for maintenance of the epididymal functions.
Keywords
Epididymis; Glucose cotransporter; Male reproduction; Postnatal development; Gene expression;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Rand, E. B., Depaoli, A. M., Davidson, N. O., Bell, G. I. and Burant, C. F. 1993. Sequence, tissue distribution, and functional characterization of the rat fructose transporter GLUT5. Am. J. Physiol. 264:G1169-G1176.
2 Schurmann, A., Axer, H., Scheepers, A., Doege, H. and Joost, H.-G. 2002. The glucose transport facilitator GLUT8 is predominantly associated with the acrosomal region of mature spermatozoa. Cell. Tissue Res. 307:237-242.   DOI   ScienceOn
3 Setty, B. S. and Jehan, Q. 1977. Functional maturation of the epididymis in the rat. J. Reprod. Fert. 49:317-322.   DOI   ScienceOn
4 Shepherd, P. R., Gould, G. W., Colville, C. A., McCoid, S. C., Gibbs, E. M. and Kahn, B. B. 1992. Distribution of GLUT3 glucose transporter protein in human tissues. Biochem. Biophys. Res. Commun. 188:149-154.   DOI   ScienceOn
5 Doege, H., Sch?mann, A., Bahrenberg, G., Brauers, A. and Joost, H. G. 2000. GLUT8, a novel member of the sugar transport facilitator family with glucose transport activity. J. Biol. Chem. 275:16275-16280.   DOI   ScienceOn
6 Duhlmeier, R., Hacker, A., Widdel, W., Von Engelhardt, W. and Sallmann, H. P. 2005. Mechanisms of insulin-dependent glucose transport into porcine and bovine skeletal muscle. Am. J. Physiol. Regul. Integr. Comp. Physiol. 289:R187-197.   DOI
7 Galardo, M. N., Riera, M. F., Pellizzari, E. H., Chemes, H. E., Venara, M. C., Cigorraga, S. B. and Meroni, S. B. 2008. Regulation of expression of Sertoli cell glucose transporters 1 and 3 by FSH, IL1 beta, and bFGF at two different timepoints in pubertal development. Cell Tissue Res. 334:295-304.   DOI
8 Gonzalez, E. and McGraw, T. E. 2006. Insulin signaling diverges into Akt-dependent and.independent signals to regulate the recruitment/docking and the fusion of GLUT4 vesicles to the plasma membrane. Mol. Biol. Cell. 17:4484-4493.   DOI   ScienceOn
9 Haber, R. S., Weinstein, S. P., O'Boyle, E. and Morgello, S. 1993. Tissue distribution of the human GLUT3 glucose transporter. Endocrinology. 132:2538-2543.   DOI   ScienceOn
10 Kajihara, T., Okagaki, R. and Ishihara, O. 2006. LPS-induced transient testicular dysfunction accompanied by apoptosis of testicular germ cells in mice. Med. Mol. Morphol. 39:203-208.   DOI   ScienceOn
11 Kujala, M., Hihnala, S., Tienari, J., Kaunisto, K., Hastbacka, J., Holmberg, C., Kere, J. and Hoglund, P. 2007. Expression of ion transport-associated proteins in human efferent and epididymal ducts. Reproduction. 133:775-784.   DOI   ScienceOn
12 Lei, Z. M., Zou, W., Mishra, S., Li, X. and Rao, C. V. 2003. Epididymal phenotype in luteinizing hormone receptor knockout animals and its response to testosterone replacement therapy. Biol. Reprod. 68:888-895.   DOI
13 Abe, H., Morimatsu, M., Nikami, H., Miyashige, T. and Saito, M. 1997. Molecular cloning and mRNA expression of the bovine insulin-responsive glucose transporter (GLUT4). J. Anim. Sci. 75:182-188.   DOI
14 Burant, C. F., Takeda, J., Brot-Laroche, E., Bell, G. I. and Davidson, N. O. 1992. Fructose transporter in human spermatozoa and small intestine is GLUT5. J. Biol. Chem. 267:14523-14526.
15 Carosa, E., Radico, C., Giansante, N., Rossi, S., D’Adamo, F., DiStasi, S. M., Lenzi, A. and Jannini, E. A. 2005. Ontogenetic profile and thyroid hormone regulation of type-1 and type-8 glucose transporters in rat Sertoli cells. Int. J. Androl. 28:99-106.   DOI   ScienceOn
16 Chen, Y., Nagpal, M. L. and Lin, T. 2003. Expression and regulation of glucose transporter 8 in rat Leydig cells. J Endocrinol. 179:63-72.   DOI   ScienceOn
17 Davidson, N. O., Hausman, A. M., Ifkovits, C. A., Buse, J. B., Gould, G. W., Burant, C. F. and Bell, G. I. 1992. Human intestinal glucose transporter expression and localization of GLUT5. Am. J. Physiol. 262:C795-C800.   DOI
18 Cornwall, G. A. 2009. New insights into epididymal biology and function. Hum. Reprod. Update. 15:213-227.   DOI   ScienceOn
19 Corpe, C. P., Bovelander, F. J., Munoz, C. M., Hoekstra, J. H., Simpson, I. A., Kwon, O., Levine, M. and Burant, C. F. 2002. Cloning and functional characterization of the mouse fructose transporter, GLUT5. Biochim. Biophys. Acta. 1576:191-197.   DOI
20 Cosentino, M. J. and Cockett, A. T. 1986. Structure and function of the epididymis. Urol. Res. 14:229-240.
21 Del Rio, A. G., Blanco, A. M., Pignataro, O., Niepomniszcze, H., Juvenal, G. and Pisarev, M. A. 2000. High-affinity binding of T3 to epididymis nuclei. Arch. Androl. 44:187-191.   DOI
22 Wood, I. S. and Trayhurn, P. 2003. Glucose transporters (GLUT and SGLT): expanded families of sugar transport proteins. Br. J. Nutr. 89:3-9.
23 Stephens, J. M., Bagby, G. J., Pekala, P. H., Shepherd, R. E., Spitzer, J. J. and Lang, C. H. 1992. Differential regulation of glucose transporter gene expression in adipose tissue or septic rats. Biochem. Biophys. Res. Commun. 183:417-422.   DOI   ScienceOn
24 Ulisse, S., Jannini, E. A., Pepe, M., De Matteis, S. and D’Armiento, M. 1992. Thyroid hormone stimulates glucose transport and GLUT1 mRNA in rat Sertoli cells. Mol. Cell. Endocrinol. 87:131-137.   DOI   ScienceOn
25 Widdas, W. F. 1988. Old and new concepts of the membrane transport for glucose in cells. Biochem. Biophys. Acta. 947: 385-404.   DOI   ScienceOn
26 Wright, E.M. and Turk, E. M. 2004. The sodium/glucose cotransport family SLC5. Pflugers Arch. 447:510-518.   DOI
27 Zhao, F.-Q., Miller, P. J., Wall, E. H., Zheng, Y. C., Neville, M. C. and McFadden, T. B. 2004. Bovine glucose transporter GLUT8: cloning, expression, and developmental regulation in mammary gland. Biochim, Biophys. Acta. 1680:103-113.   DOI   ScienceOn
28 Yamashita, S. 2004. Localization of estrogen and androgen receptor in male reproductive tissues of mice and rats. Anat. Rec. A Discov. Mol. Cell. Evol. Biol. 279:768-778.
29 Zhao, F.-Q., Glimm, D. R. and Kennelly, J. J. 1993. Distribution of mammalian facultative glucose transporter messenger RNA in bovine tissues. Int. J. Biochem. 25:1897-1903.   DOI   ScienceOn
30 Zhao, F.-Q. and Keating, A. F. 2007. Functional properties and genomics of glucose transporters. Curr. Genomics. 8:113-128.   DOI
31 Li, Q., Manolescu, A., Ritzel, M., Yao, S., Slugoski, M., Young, J. D., Chen, X. Z. and Cheeseman, C. I. 2004. Cloning and functional characterization of the human GLUT7 isoform SLC2A7 from the small intestine. Am. J. Physiol. Gastrointest. Liver Physiol. 287:G236-242.   DOI   ScienceOn
32 Mueckler, M., Caruso, C., Baldwin, S. A., Panico, M., Blench, I., Morris, H. R., Allard, W. J., Lienhard, G. E. and Lodish, H. F. 1985. Sequence and structure of a human glucose transporter. Science. 229:941-945.   DOI
33 Nualart, F., Los Angeles Garcia, M., Medina, R. A. and Owen, G. I. 2009. Glucose transporters in sex steroid hormone related cancer. Curr. Vasc. Pharmacol. [Epub ahead of print].
34 Pietrement, C., Sun-Wada, G. H., Silva, N. D., McKee, M., Marshansky, V., Brown, D., Futai, M. and Breton, S. 2006. Distinct expression patterns of different subunit isoforms of the V-ATPase in the rat epididymis. Biol. Reprod. 74:185-194.   DOI