Browse > Article
http://dx.doi.org/10.5187/JAST.2009.51.6.443

Identification of Differentially Expressed Genes Between Preadipocytes and Adipocytes Using Affymetrix Bovine Genome Array  

Yu, Seong-Lan (Division of Animal Science and Resources, College of Agriculture and Life Sciences, Chungnam National University)
Lee, Sang-Mi (Department of Animal Science, College of Agriculture and Life Science, Chonnam National University)
Kang, Man-Jong (Department of Animal Science, College of Agriculture and Life Science, Chonnam National University)
Jeong, Hang-Jin (Division of Animal Science and Resources, College of Agriculture and Life Sciences, Chungnam National University)
Sang, Byung-Chan (Division of Animal Science and Resources, College of Agriculture and Life Sciences, Chungnam National University)
Jeon, Jin-Tae (Division of Applied Life Science, Gyeongsang National University)
Lee, Jun-Heon (Division of Animal Science and Resources, College of Agriculture and Life Sciences, Chungnam National University)
Publication Information
Journal of Animal Science and Technology / v.51, no.6, 2009 , pp. 443-452 More about this Journal
Abstract
Adipocytes are differentiated from preadipocytes and have large capacity for storing fats inside cells. In cattle, intramuscular fat (IMF) content is one of the major determinants for meat quality and also highly affects market prices, especially in Japan and Korea. In order to profiling differentially expressed genes between intramuscular fibroblast-like cells (preadipocytes) and their differentiated adipocytes, we have established intramuscular fibroblast-like cells from M. longissimus thoracis in Korean cattle (Hanwoo). The differentially expressed genes were selected by comparing these two types of cells ug thecommercially available 23kese two types of cells ug theco. The results indan ced that 206 arecomelements were differentially expressed. Of these, 67 and 94 ks wn genes were up and d wn regulaced, respectively, in adipocytes ug ng both 2-fold difference and Welch's t-test as the cut-off points. The differentially expressed genes identified in this study can be used as good markers for improving meat quality traits with further verification of their biological functions, especially IMF contents in cattle.
Keywords
Adipocytes; Bovine genome array; Differentially expressed genes; Intramuscular fat; Korean cattle;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Scherer, P. E., Lisanti, M. P., Baldini, G., Sargiacomo, M., Mastick, C. C. and Lodish, H. F. 1994. Induction of caveolin during adipogenesis and association of GLUT4 with caveolinrich vesicles. J. Cell Biol. 127:1233-1243.   DOI
2 Scherer, P. E., Lewis, R. Y., Volonte, D., Engelman, J. A., Galbiati, F., Couet, J., Kohtz, D. S., van Donselaar, E., Peters, P. and Lisanti, M. P. 1997. Cell-type and tissue-specific expression of caveolin-2. Caveolins 1 and 2 co-localize and form a stable hetero-oligomeric complex in vivo. J. Biol. Chem. 272:29337-29346.   DOI   ScienceOn
3 Tahara, K., Aso, H., Yamasaki, T., Rose, M. T., Takasuga, A., Sugimoto, Y., Yamaguchi, T., Tahara, K. and Takano, S. 2004. Cloning and expression of type XII collagen isoforms during bovine adipogenesis. Differentiation. 72:113-122.   DOI   ScienceOn
4 Takenouchi, T., Miyashita, N., Ozutsumi, K., Rose, M. T. and Aso, H. 2004. Role of caveolin-1 and cytoskeletal proteins, actin and vimentin, in adipogenesis of bovine intramuscular preadipocyte cells. Cell Biol. Int. 28:615-623.   DOI   ScienceOn
5 Taniguchi, M., Guan, L. L., Zhang, B., Dodson, M. V., Okine, E. and Moore, S. S. 2007. Gene expression patterns of bovine perimuscular preadipocytes during adipogenesis. Biochem. Biophys. Res. Commun. 366:346-351.
6 Wood, J. D., Enser, M., Fisher, A. V., Nute, G. R., Richardson, R. I. and Sheard, P. R. 1999. Manipulating meat quality and composition. Proc. Nutr. Soc. 58:363-370.   DOI   ScienceOn
7 Wu, Z., Rosen, E. D., Brun, R., Hauser, S., Adelmant, G., Troy, A. E., McKeon, C., Darlington, G. J. and Spiegelman, B. M. 1999. Cross-regulation of C/EBP alpha and PPAR gamma controls the transcriptional pathway of adipogenesis and insulin sensitivity. Mol. Cell. 3:151-158.   DOI   ScienceOn
8 Zalesin, K. C., Franklin, B. A., Miller, W. M., Peterson, E. D. and McCullough, P. A. 2008. Impact of obesity on cardiovascular disease. Endocrinol. Metab. Clin. North Am. 37: 663-684.   DOI   ScienceOn
9 Ma, Y., Koza-Taylor, P. H., DiMattia, D. A., Hames, L., Fu, H., Dragnev, K. H., Turi, T., Beebe, J. S., Freemantle, S. J. and Dmitrovsky, E. 2003. Microarray analysis uncovers retinoid targets in human bronchial epithelial cells. Oncogene. 22:4924-4932.   DOI   ScienceOn
10 Martin, S. and Parton, R. G. 2005. Caveolin, cholesterol, and lipid bodies. Semin. Cell. Dev. Biol. 16:163-174.   DOI   ScienceOn
11 Nakajima, I., Muroya, S., Tanabe, R. and Chikuni, K. 2002. Extracellular matrix development during differentiation into adipocytes with a unique increase in type V and VI collagen. Biol. Cell. 94:197-203.   DOI   ScienceOn
12 Rangwala, S. M. and Lazar, M. A. 2000. Transcriptional control of adipogenesis. Annu. Rev. Nutr. 20:535-559.   DOI   ScienceOn
13 Nakajima, I., Muroya, S., Tanabe, R. and Chikuni, K. 2002. Positive effect of collagen V and VI on triglyceride accumulation during differentiation in cultures of bovine intramuscular adipocytes. Differentiation. 70:84-91.   DOI   ScienceOn
14 Nakajima, I., Yamaguchi, T., Ozutsumi, K. and Aso, H. 1998. Adipose tissue extracellular matrix: newly organized by adipocytes during differentiation. Differentiation. 63:193-200.   DOI   ScienceOn
15 Nagy, L., Saydak, M., Shipley, N., Lu, S., Basilion, J. P., Yan, Z. H., Syka, P., Chandraratna, R. A., Stein, J. P., Heyman, R. A. and Davies, P. J. 1996. Identification and characterization of a versatile retinoid response element (retinoic acid receptor response element-retinoid X receptor response element) in the mouse tissue transglutaminase gene promoter. J. Biol. Chem. 271:4355-4365.   DOI
16 Reusch, J. E., Colton, L. A. and Klemm, D. J. 2000. CREB activation induces adipogenesis in 3T3-L1 cells. Mol. Cell. Biol. 20:1008-1020.   DOI   ScienceOn
17 Rosen, E. D. and Spiegelman, B. M. 2000. Molecular regulation of adipogenesis. Annu. Rev. Cell Dev. Biol. 16:145-171.   DOI   ScienceOn
18 Garces, C., Ruiz-Hidalgo, M. J., Font de Mora, J., Park, C., Miele, L., Goldstein, J., Bonvini, E., Porras, A. and Laborda, J. 1997. Notch-1 controls the expression of fatty acid-activated transcription factors and is required for adipogenesis. J. Biol. Chem. 272:29729-29734.   DOI   ScienceOn
19 Girard, J., Perdereau, D., Foufelle, F., Prip-Buus, C. and Ferre, P. 1994. Regulation of lipogenic enzyme gene expression by nutrients and hormones. FASEB J. 8:36-42.   DOI
20 Green, H. and Kehinde, O. 1975. An established preadipose cell line and its differentiation in culture II. Factors affecting the adipose conversion. Cell. 5:19-27.   DOI   ScienceOn
21 Hou, X., Richardson, S. J., Aguilar, M. I. and Small, D. H. 2005. Binding of amyloidogenic transthyretin to the plasma membrane alters membrane fluidity and induces neurotoxicity. Biochemistry. 44:11618-11627.   DOI   ScienceOn
22 Inoue-Murayama, M., Sugimoto, Y. Niimi, Y. and Aso, H. 2000. Type XVIII collagen is newly transcribed during bovine adipogenesis. Differentiation. 65:281-285.   DOI   ScienceOn
23 Jeong, Y. H., Lee, S. M., Kim, H. M., Park, H. Y., Yoon, D., Moon, S. J., Hosoda, A., Kim, D. H., Saeki, S. and Kang, M. J. 2008. Cloning, expression and regulation of bovine cellular retinoic acid-binding protein II (CRABP-II) during adipogenesis. Asian-Aust. J. Anim. Sci. 21:1551-1558.   DOI
24 Kook, S. H., Choi, K. C., Son, Y. O., Lee, K. Y., Hwang, I. H., Lee, H. J., Chang, J. S., Choi, I. H. and Lee, J. C. 2006. Satellite cells isolated from adult Hanwoo muscle can proliferate and differentiate into myoblasts and adipose-like cells. Mol. Cells. 22:239-245.
25 Lindstedt, L., Saarinen, J., Kalkkinen, N., Welgus, H. and Kovanen, P. T. 1999. Matrix metalloproteinases-3, -7, and -12, but not -9, reduce high density lipoprotein-induced cholesterol efflux from human macrophage foam cells by truncation of the carboxyl terminus of apolipoprotein A-I. Parallel losses of prebeta particles and the high affinity component of efflux. J. Biol. Chem. 274:22627-22634.   DOI
26 Casas, E., Stone, R. T., Keele, J. W., Shackelford, S. D., Kappes, S. M. and Koohmaraie, M. 2001. A comprehensive search for quantitative trait loci affecting growth and carcass composition of cattle segregating alternative forms of the myostatin gene. J. Anim. Sci. 79:854-860.   DOI
27 Asakura, A., Komaki M. and Rudnicki, M. 2001. Muscle satellite cells are multipotential stem cells that exhibit myogenic, osteogenic, and adipogenic differentiation. Differentiation. 68:245-253.   DOI   ScienceOn
28 Aso, H., Abe, H., Nakajima, I., Ozutsumi, K., Yamaguchi, T., Takamori, Y., Kodama, A., Hoshino, F. B. and Takano. S. 1995. A preadipocyte clonal line from bovine intramuscular adipose tissue: nonexpression of GLUT-4 protein during adipocyte differentiation. Biochem. Biophys. Res. Commun. 213:369-375.   DOI   ScienceOn
29 Camps, M., Nichols, A. and Arkinstall, S. 2000. Dual specificity phosphatases: a gene family for control of MAP kinase function. FASEB J. 14:6-16.   DOI
30 Casas, E., Keele, J. W., Shackelford, S. D., Koohmaraie, M. and Stone, R. T. 2004. Identification of quantitative trait loci for growth and carcass composition in cattle. Anim. Genet. 35:2-6.   DOI   ScienceOn
31 Chavey, C., Mari, B., Monthouel, M. N., Bonnafous, S., Anglard, P., Van Obberghen, E. and Tartare-Deckert, S. 2003. Matrix metalloproteinases are differentially expressed in adipose tissue during obesity and modulate adipocyte differentiation. J. Biol. Chem. 278:11888-11896.   DOI   ScienceOn