Browse > Article
http://dx.doi.org/10.5187/JAST.2005.47.3.465

Detection of Gram-negative Bacteria in Broad-range PCR Amplifying 16S rRNA Gene with Semi-nested Primers and Its Application in Market Milk  

Choi, Suk-Ho (Dept of Biotechnology, Sangji University)
Choi, J.J. (Dept of Biotechnology, Sangji University)
Lee, S.B. (Dept of Biotechnology, Sangji University)
Publication Information
Journal of Animal Science and Technology / v.47, no.3, 2005 , pp. 465-474 More about this Journal
Abstract
A two-step broad-range PCR method detecting gram-negative bacteria at the level as low as 2 CFU was developed by using primers of GNFI and GNRI and then semi-nested primer of GNF2 and GNRI. The nucleotide sequences of the primers were determined based on l6S rRNA gene. The DNA fragments of 1173 bp and 169 bp were amplified in one-step PCRs with primer sets of GNFI-GNRI and GNF2-GNRl, respectively, using template DNA from seven strains of gram-negative bacteria including Escherichia coli, Enterobacter aerogenes, Klebsiella pneumoniae, Pseudomonas spp., and Acinetobacter baumaii but not from Achromobacter lyticus, Alca/igens faecalis, and five strains of gram-positive bacteria. DNA fragments of 180 bp were amplified from LTLT-pasteurized milk and UHf-pasteurized milk in the two-step PCR. The DNA fragments were amplified from LTLT-pasteurized milk which was added with Pseudomonas j/uorescens and subsequently heated at 65 $^{\circ}C$, 80 $^{\circ}C$, and 100 $^{\circ}C$ for 30 min but they were not amplified from the milk autoclaved at 121$^{\circ}C$ for 15 min. It was suggested in PCR that Pseudomonas fluorescens heated at 65 $^{\circ}C$ for 30 min in milk was more sensitive to DNase treatment than viable bacteria.
Keywords
PCR; 16S rRNA; Gram-negative bacteria; Market milk;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Hashimoto, Y., Itho, Y., Fujinaga, Y., Khan, A. Q., Sultana, F., Miyake, M., Hirose, K., Yamamoto, H. and Ezaki, T. 1995. Development of nested PCR based on the ViaB sequence to detect Salmonella typhi. J. Clin. Microbiol., 33:775-777
2 Herman, L. 1997. Detection of viable and dead Listeria monocytogenes by PCR Food Microbiol. 14:103-110   DOI   ScienceOn
3 Vaitilingom, M., Gendre, F. and Brignon, P. 1998. Direct detection of viable bacteria, molds, and yeasts by reverse transcriptase PCR in contaminated milk samples after heat treatment. Appl. Environ. Microbiol. 64:1157-1160
4 Wiedmann, M., Czajka, J., Barany, F. and Batt, C. A. 1992. Discrimination of Listeria monocytogenes from other Listeria species by ligase chain reaction. Appl. Environ. Microbiol. 58:3443-3447
5 Greisen, K., Loeffelholz, M., Purohit, A and Leong, D. 1994. PCR primers and probes for the 16S rRNA gene of most species of pathogenic bacteria, including bacteria found in cerebrospinal fluid. J. Clin. Microbiol. 32:335-351
6 Bej, A. K., Mahbubani, M. H. and Atlas, R. M. 1991. Detection of viable Legionella pneumophila in water by polymerase chain reaction and gene probe methods. Appl. Environ. Microbiol. 57:597--600
7 Cooray, K. J., Nishibori, T., Xiong, H., Matsuyama, T., Fujita, M and Mitsuyama, M. 1994. Detection of multiple virulence-associated genes of Listeria monocytogens by PCR in artificially contaminated milk samples. Appl. Environ. Microbiol. 60:3023-3026
8 Duprey, E., Caprais, M. P., Derrien, A. and Fach, F. 1997. Salmonella DNA persistence in natural eawaters using PCR analysis. J. Appl. Microbiol. 82:507-510   DOI   ScienceOn
9 Herman, L. M. F., De Block, J. H. G. E. and Moermans, R. J. B. 1995. Direct detection of Listeria monocytogenes in 25 milliliters of raw milk by a two-step PCR with nested primers. Appl. Environ. Microbiol. 61:817-819
10 Holt, J. G. 1984. Bergey's manual of systematic bacteriology. Williams and Wilkins, Baltimore and London
11 IDF. 1993. Catalogue of tests for the detection of post-pasteurization contamination of milk. Bulletin of the IOF 281, pp13-34
12 Paabo, S., Gifford, J. A. and Wilson, A. C. 1988. Mitochondrial DNA sequences from a 7000-year brain. Nucleic Acids Res., 16:0775-87   DOI   ScienceOn
13 Impraim, C. C., Saiki, R. K., Erlich, H. A. and Teplitz, R. L. 1987. Analysis of DNA extract from formalin-fixed, paraffin-embedded tissues by enzymatice amplification and hybridization with sequence-specific oligonucleotides. Biochem, Biophys. Res, Commun., 142:710-6   DOI   ScienceOn
14 Masters, C. L., Shallcross, J. A. and Mackey, B. M. 1994. Effect of stress treatments on the detection of Listeria monocytogenes and enterotoxigenic Escherichia coli by the polymerase chain reaction J. Appl. Bacteriol. 77:73-9   DOI
15 McKillip, J. L., Jaykus, L. -A. and Drake M. 1998. rRNA stability in heat-killed and UV-irradiated enterotoxigenic Staphylococcus aureus and Escherichia coli O157:H7. Appl. Environ. Microbiol. 64:4264-4268
16 Rasmussen, H. N., Rasmussen, O. F., Christensen, H. and Olsen, J. E. 1995. Detection of Yersinia enterocolitica 0:3 in faecal samples and tonsil swabs from pigs using IMS and PCR. J. Appl. Bacteriol. 78:563-568   DOI
17 Wiedmann, M., Barany, F. and Batt, C. A. 1993. Detection of Listeria monocytogenes with a nonisotopic polymerase chain reaction-coupled ligase chain reaction assay. Appl. Environ. Microbiol. 59: 2743-2745
18 Woese, C. R. 1987. Bacterial evolution. Microbiol. Rev. 51:221-271
19 최석호, 최정준, 이승배, 윤영호. 2004. 시유의 2차오염과 저장가능기간을 결정하기 위한 resazurin 환원시간검사. 한국동물자원과학회지, 46:999-1006
20 Zimmermann, K., Volkei, D., Turceic, P., Schwarz, H. –P. and Rieger, M. 2001. Methods for the detection, quantification and and differentiation of infectious versus non-infectious pathogens in a sample. PCT, WO 01/46462 A2
21 Versalovic, J., Koeuth, T. and Lupski, J. R. 1991. Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res. 19:6823-31   DOI   ScienceOn
22 Giovannoi, S. -J., Delong, E. F., Olsen, G. J. and Pace, N. R. 1988. Phylogenetic group-specific oligonucleotide probe for identification of single microbial cells. J. Bacteriol. 170:720-726