Browse > Article
http://dx.doi.org/10.5187/JAST.2005.47.3.379

Effect of Dietary Brown Seaweed Levels on the Protein and Energy Metabolism in Broiler Chicks Activated Acute Phase Response  

Koh, T.S. (Department of Animal Life Sciences, Konkuk University)
Im, J.T. (Department of Animal Life Sciences, Konkuk University)
Park, I.K. (Department of Animal Life Sciences, Konkuk University)
Lee, H.J. (Department of Animal Life Sciences, Konkuk University)
Choi, D.Y. (Department of Animal Life Sciences, Konkuk University)
Choi, C.J. (Department of Animal Life Sciences, Konkuk University)
Lee, H.G. (Seoul National University)
Choi, Y.J. (Seoul National University)
Publication Information
Journal of Animal Science and Technology / v.47, no.3, 2005 , pp. 379-390 More about this Journal
Abstract
Effects of dietary brown seaweed product levels on performance and metabolism of protein and energy were investigated in broiler chicks that were activated the acute phase response. One day old chicks were fed diets containing either 0.0(basal), 1.0, 2.0 or 4.0 % brown seaweed products for 3 weeks. The acute phase response was activated by injecting i.p. the Salmonella typhimurium lipopolysacharide(LPS) at $2^{nd}$ week of age. The acute phase response lowered nitrogen balance(NB)/ $kg^{0.75}$ (metabolic body size) and highered dietary ME values in birds fed diets containing brown seaweed product. Increase in dietary brown seaweed products levels lowered daily gain, and NB, uric acid nitrogen(UAN) excretion and ME utilization per $kg^{0.75}$ in chicks with the acute phase response. But the dietary brown seaweed product level did not affect the performance of 3 Week old broiler chicks that experienced the acute phase response. And the brown seaweed products 1.0 and 2.0 % diets lessened the feed intake reduction caused by the acute phase response in broiler chicks. The brown seaweed 2.0% diet increased NB / g diet or $kg^{0.75}$ and decreased the excretion of UAN/g diet or $kg^{0.75}$. This result indicated that the brown seaweed was able to interact with the acute phase response and increased protein retention via decreased breakdown of protein in birds fed brown seaweed 2.0% diet.
Keywords
Brown seaweed product; Acute phase response; Nitrogen balance; Uric acid nitrogen; Metabolizable energy; Broiler chicks;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Benson, B. N., Calvert, C. C., Roura, E. and Klasing, K. C. 1993. Dietary energy source and density modulate the expression of immunologic stress in chicks. J. Nut. 123(10):1714-1723
2 Cho, D. M., Kim, D. S., Lee, D. S., Kim, H. R. and Pyeun, J. H. 1995. Trace components and functional saccharides in seaweed-I. Changes in proximate composition and trace elements according to the harvest season and places. Han'guk Susan Hakhoechi, 28(1):49-59
3 Dascombe, M. J., Rothwell, N. J., Sagay, B. O. and Stock, M. J. 1989. Pyropgenic and thermogenic effects of interleukin-l${\beta}$ in the rat. Am. J. hysiol. 256:E7-11
4 Flores, E. A., Bistrian, B. R., Pomposelli,, J. J., Dinarello, C. A., Backbum, G. L. and Istfan, N. W. 1989. Infusion of tumor necrosis factor/cachectin promotes muscle catabolism in the rat. J. Clin. Invest. 83:1614-1622   DOI
5 Gaby, C. and Kushner, I. 1999. Acute-phase proteins and other systemic responses to inflammation. N. Engl. J. Med. 340:448-454   DOI   ScienceOn
6 Klasing, K. C. and Austic, R. E. 1984. Changes in protein degradation in chickens due to immunologic stress. Proc. Soc. Exp. Biol. Med. 176:292-296
7 Klasing, K. C., 1987. Influence of cell sources, stimulating agents, and incubation conditions on release of interleukin-l from chicken macrophages. Develop. and Comp. Immunol., 11:385-394   DOI   ScienceOn
8 Klasing, K. C. and Barnes, D. M. 1988. Decreased amino acid requirement of growing chicks due to immunologic stress. J. Nutr. 118:1158-1164
9 Klasing, K. C. and Korver, D. R. 1997. Leukocytic cytokines regulate growth rate and composition following activation of the immune system. J. Anim. Sci. 75(Suppl,2):58-67
10 Klasing, K. C. 1998. Nutritional modulation of resistance to infectious diseases. Poultry Sci., 77:1119-1125
11 Kleiber, M., 1947. Body size and metabolic rate. Physiol. Rev., 27:511-541
12 Koh, T. S., Peng, R. K. and Klasing, K. C. 1996. Dietary copper level affects copper metabolism during lipopolysaccharide induced immunological stess in chicks. Poult. Sci., 75(7):867-872   DOI   ScienceOn
13 Koh, T. S., Im, J. T., Park, I. K. and Kim, J. H., 2004a Effect of dietary krill meal on the performance of broiler chicks during the acute phase response. J. Anim. Sci & Technol. 46(2):173-182.(in Korean)   DOI
14 Otterlei, M., Ostggard, K., Skjaek-Break, G., Smidsrod., O., Soon-Shiong, P. and Espevik, T. 1991. Induction of cytokine production from human monocytes stimulated with alginate. J. Immunother. 10:286-291   DOI
15 Roura, E., Homedes, J. and Klasing, K. C. 1992. Prevention of immunologic stress contributes to the growth-permitting ability of dietary antibiotics in chicks. J. Nutr. 122:2383-2390
16 Son, E. H., Moon, E. Y. Rhee, D. K. and Pyo, S. 2001. Stimulation of various functions in murine peritoneal macrophages by high mannuronic acid-containing alginate (HMA) exposure in vivo. International Immunopharmacology. 1:147-154   DOI   ScienceOn
17 Im, J. T., Kim, J. H., Park, I. K. and Koh, T. S. 2003. Effect of Salmonella typhymurium lipopolisaccharide injection on the performance, nitrogen balance and ME utilization of dietary krill meal in broiler chicks. J. Anim. Sci & Technol. 45(6):957-966.(in Koran)   DOI
18 Suzuki, T., Nakai, K., Yoshie, Y., Shirai, T. and Hiramo, T. 1993. Seasonal variation in the dietary fiber content and molecular weight of soluble dietary fiber in brown alga. Hijiki. Nippon Suisan Gakkaishi, 59(9):1633
19 Takahashi, K., Watanuki, Y., Yamazki, M. and Abe, S. 1988. Local induction of a cytotoxic factor in a murine tumor by systemic administration of an antitumor polysacchrdide, MGA. Sr. J. Ca ncer 57: 170-173   DOI   ScienceOn
20 Gauldie, J. and Baumann, H. 1991. Cytokines and acute phase protein synthesis. In : Cytokines and inflammation. E. S. Kimball, ed. CRC Press, Inc., Boca Raton, FL. pp. 275-305
21 Kim, D. S., Lee, D. S., Cho, D. M., Kim, H. R. and Pyeun, J. H. 1995. Trace components and functional saccharides in marine alge. 2. Dietary fiber contents and distribution of the algal polysaccharides. J. Korean Fish. Soc., 28(3):270-278(in Korean)
22 Klasing, K. C. 1994. Avian leukocytic cytokines. Poultry Sci. 73: 1035-1043   DOI   ScienceOn
23 Marquardt, R. R. 1983. A simple spectrophotometric method for the direct determination of uric acid in avian excreta, Poult. Sci. 62:2106-2108   DOI   ScienceOn
24 Mori, B., Kushima, K., Iwasaki, T. and Omiya, H. 1981. Dietary fiber content of seaweed. Nippon Nogei Kagaku, 55(9):787-791. (in Japanese)   DOI
25 Lee, D. S., Kim, H. R., Cho, D. M., Nam, T. J. and Pyeun, J. H. 1998. Uronate compositions of alginates from the edible brown algaer. Han'guk Susan Hakhoechi, 31(1):1-7
26 Koh, T. S., Im, J. T., Park, I. K. and Lee, S. I. 2004b. Effect of dietary fish oil on the nutrient metabolism and anti-oxidant enzyme activity during the acute phase response. The 11th AAAP Congress: 5-9, September 2004. pp. 1-3
27 Koh, T. S., Joo, Y. D., Woo, K. M., Choi, C. L. and Park, B. S. 1994. Concurrent bioassay of energy and protein utilization of protein sources in Layer. K. J. Poutry. Sci. 21(2): 133-138. (in Korean)
28 Korver, D. R. and Klasing, K. C. 1997. Dietary fish oil alters specific and inflammatory immune response, J. Nutr. pp. 2039-2046