Browse > Article

On the Biological Functions of Equine Chorionic Gonadotropin  

민관식 (한경대학교 동물생명자원학과)
윤종택 (한경대학교 생물·정보통신전문대학원)
Publication Information
Abstract
In horse, a single gene encodes both eCG and eLH $\beta$ subunits. The difference between eCG and eLH lies in the structure of their glycoresidues, which are both sialylated and sulfated in LH and sialylated in CG eCG consists of highly glycosyiated $\alpha$- and $\beta$-subunits and is an unique member of the gonadotropin family because it elicits response characteristics of both FSH and LH in other species than the horse. This dual activity of eCG in heterologous species is of fundamental interest to the study of gonadotropin structure-function relationships and the understanding of the molecular bases of the specific interactions of these hormones with their receptors. Thus, eCG is a dintinct molecule from the view points of its biological function and glycoresidue structures. The oligosaccharide at Asn 56 of the $\alpha$-subunit plays an indispensable role, whereas the carboxyl-terminal extension of the eCG $\beta$-subunit with its associated O-linked oligosaccharides is not improtant for, the in vitro LH-like activity of eCG. In contrast, both N- and O-linked oligosaccharides play important roles for FSH-like activity and increase FSH-like activity by removal of N- and O-linked oligosaccharides. Therefore, the dual LH- and FSH-like activities of eCG can be clearly separated by removal of either the N-linked oligosaccharide on the $\alpha$-subunit or CTP-associated O-linked oligosaccharides from its $\beta$-subunit. The glycoresidues seem to play crucial roles fer biological activities. The tethered-eCG was effciently secreted and showed similar LH-like activity to the dimeric eCG $\alpha$/ $\beta$ and native eCG. FSH-like activity of the tethered-eCG was also shown similarly in comparison with the native and wild type eCG $\alpha$/ $\beta$. Our data for the first time suggest that the tethered-eCG can be expressed efficiently and the produced product by the CHO-Kl cells is fully LH- and FSH-like activities in rat in vitro bioassay system. Our results also suggest that this molecular can imply particular models ot FSH-like activity not LH-like activity in the eCG. Taken together, these data indicate that the constructs of tethered molecule will be useful in the study of mutants that affect subunit association and/or secretion.
Keywords
Equine chorionic gonadotropin; Biological activity; rec-eCG;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Chen, F. and Puett, D. J. 1991. Delineation via site-directed mutagenesis of the carboxyl-terminal region of human choriogonadotropin ${\beta}$ required for subunit assembly and biological activity. J. Biol. Chem., 266:6904-6908   PUBMED
2 Furuhashi, M., Shikone, T., Farest, F. A., Sugahara, T., Hsueh, A. J. W. and Boime, I. 1995. Fusing the carboxyl-terminal peptide of the chorionic gonadotropin (CG) ${\beta}$-subunit to the common ${\alpha}$-subunit: retension of O-linked glycosylation and enhanced in vitro bioactivity of chimeric human CG. Mol. Endocrinol., 9:54-63
3 Min, K. S., Liu, X., Fabritz, J., Jaquette, J., Abell, A. M. and Ascoli, M. 1998. Mutations that induce constitutive activation and mutations that impair signal transduction modulate the basal and/or agonist-stimulated internalization of the lutropin/choriogonadotropin receptor. JBC, 273:34911-34919
4 Min, K. S., Shinozaki, M., Miyazawa, K., Nishimura, R., Sasaki, N., Shiota, K. and Ogawa, T. 1994. Nucleotide sequence of eCG ${\alpha}$-subunit cDNA and its expression in the equine placenta. J. Reprod. Dev., 40:301-305   DOI   ScienceOn
5 More, W. T. and Ward, D. N. 1980. Pregnant mare serum gonadotropin; An in vitro biological characterization of the lutropin-follitropin dual activity. J. Biol. Chem., 255:6930-6936
6 Narayan, P., Wu, C. and Puett, D. 1995. Functional expression of yoked human chorionic gonadotropin in baculovirus-infected insect cells. Mol. Endocrinol., 9:1720-1726
7 Sugahara. T., Pixley, M. R., Minami, S., Perlas, E., Ben-Menahem, D., Hsueh, A. J. W. and Boime, I. 1995. Biosynthesis of a biologically active single peptide chain containing the human common ${\alpha}$ and chorionic gonadotropin ${\beta}$ subunits in tandem. Proc. Natl. Acad. Sci., USA. 92:2041-2045
8 Bousfield, G. R., Baker, V. L. and Clem, D. M. 1992. Comparision of the O-glycosylation of eLH and eCG beta subunits. The endocrine society, p1200
9 Miyazaki, J. I., Takaki, S., Araki, S., Tashiro, F., Tominaga, A., Takatsu, K. and Yamamura, K. 1989. Expression vector system based on the chicken ${|beta}$-actin promoter directs efficient production of interleukin-5. Gene, 79:269-277
10 Sugino, H., Bousfield, G. R., Moore, W. T. and Ward, D. N. 1987. Structural studies on equine glycoprotein hormones. Amino acid sequence of equine chorionic gonadotropin ${\beta}$-subunit. J. Biol. Chem., 262:8603-8609   PUBMED
11 Niwa, H., Yamamura, K. I. and Miyazaki, J. I. 1991. Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene, 108:193-200   DOI   PUBMED   ScienceOn
12 Min, K. S. 2000d. Differential expression of glycoprotein hormones in equine placenta and pituitary. Dev. Reprod., 4:87-93
13 Huang, J, Chen, F. and Puett, D. 1993. Amino/carboxyl-terminal deletion mutants of humanchoriogonadotropin ${\beta}$. J. Biol. Chem., 268:9311-9315
14 Matzuk, M. M., Hsueh, A. J. W., Lapolt, P.,Tsafriri, A., Keene, J. L. and Boime, I. 1990. The biological role of the carboxyl-terminal extension of human chorionic gonadotropin ${\beta}$-subunit. Endocrinology, 126:376-383   DOI   ScienceOn
15 Min, K. S. 2000a. Function of constitutively activating lutropin/choriogonadotropin receptor. Korean J. Animal Reprod., 24:41-47
16 Min, K. S. 2001. Biosynthesis of a biological active single chain equine chorionic gonadotropin. J. Life. Science, 11:103-107
17 Min, K. S., Shiota, K., Saneyoshi, T., Hirosawa, M. and Ogawa, T. 1997. Differential role of oligosacchairdes in equine chorionic gonadotropin (eCG)/luteinizing hormone (LH) to express follicle stimulating hormone (FSH) -like and LH-like activities. J Reproduction and Development, 43:177-179
18 Calvo, F. O., Keutmann, H. T., Berger, E. R. and Ryan, R. J. 1986. Deglycosylated human follitropin; Characterization and effects on adenosine cyclic 3', 5'-phosphate production in porcine granulosa cells. Biochemistry, 25:3938-3943   DOI   ScienceOn
19 Min, K. S. 2000c. Biological functions of N- and O-linked oligosaccharides of equine chorionic gonadotropin and lutropin/chorionic gonadotropin receptor. Korean J. Animal Reprod., 24: 357-364
20 Sugahara, T., Sato, A., Kudo, M., Ben-Menahem, D., Pixley, M. R., Hsueh, A. J. W. and Boime, I. 1996. Expression of biologically active fusion genes encoding the common alpha subunit and the follicle-stimulating hormone beta. Role of a linker suquence. J. Biol. Chem., 271:10445-10448
21 Min, K. S. 2000b. On the secretion and functions of equine chorionic gonadotropin. Review. Korean J. Animal Reprod., 24:125-142
22 Matzuk, M. M., Keene, J. L. and Boime, I. 1989. Site specificity of the chorionic gonadotropin N-linked oligosaccharides in signal transduction. J. Biol. Chem., 264:2409-2414
23 Pierce, J. G and Parsons, T. F. 1981. Glycoprotein hormones: structure and function. Annu. Rev. Biochem., 50:465-490   DOI   ScienceOn
24 Bielinska, M., Matzuk, M. M. and Boime, I. 1989. Site-specific processing of the N-linked oligosaccharides of the human chorionic gonadotropin ${\alpha}$-subunit. J. Biol. Chem., 264:17113-17118
25 Min, K. S. 1999. Functional expression of lutropin/choriogonadotropin and follitropin receptor cDNAs in 293 cells. Korean J. Animal Reprod., 23:347-352
26 Sairam, M. R. and Bhargavi, G. N. 1985. A role for glycosylation of the ${\alpha}$ subunit in transduction of biological signal in glycoprotein hormones. Science, 229:65-67   DOI   PUBMED   ScienceOn
27 Saneyoshi, T., Min, K. S., Ma, X. J., Nambo, Y., Hiyama, T., Tanaka, T. and Shiota, T. Equine follicle-stimulating hormone: Molecular cloning of ${\beta}$-subunit and biological role of the asparagines-Iinked oligosaccharide at asparagine 56 of ${\alpha}$-subunit. Biology of Reproduction. 65: 1686-1690   DOI   ScienceOn
28 Apparwal, B. B. and Papkoff, H. 1981. Relationship of sialic acid residues to in vitro biological and immunological activities of equine gonadotropin. Biol. Reprod., 24:1082-1087
29 Min, K. S., Hattori, N., Aikawa, J. I., Shiota, K. and Ogawa, T. 1996. Site-directed mutagenesis of recombinant equine chorionic gonadotropin/luteinizing hormone: differential role of oligosaccharides in luteinizing hormone- and follicle -stimulaiting hormone-like activities. Endocrine J., 43:585-593   DOI   ScienceOn
30 Crawford, R. J., Tregear, G. W. and Niall, H. D. 1986. The nucleotide sequences of baboon chorionic gonadotropin ${\beta}$-subunit genes have diverged from the human. Gene, 46:161-169   DOI   PUBMED   ScienceOn
31 Chen, W. and Bahl, O. P. 1991. Recombinant carbohydrate variant of human choriogonadotropin ${\beta}$ -subunit (hCG ${\beta}$) descarboxyl terminus (115-145). Expression and characterization of carboxyl-terminal deletion mutant of hCG ${\beta}$ in the baculovirus system. J. Biol. Chem., 266:6246-6251   PUBMED