Browse > Article
http://dx.doi.org/10.5635/ASED.2019.35.2.011

A New Record of the Brittle Star, Amphistigma minuta (Ophiuroidea: Amphilepidida: Amphiuridae), from Jeju Island, Korea  

Lee, Taekjun (Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University)
Shin, Sook (Marine Biological Resource Institute, Sahmyook University)
Abstract
The brittle star, Amphistigma minuta H.L. Clark, 1938, was collected from Munseom Island, Jeju-do, Korea, by SCUBA diving. This species has distinct morphological features, as follows: a small disk with large papillae on the disk margin; slender arms and four arm spines at proximal; and oral parts the same as those of the genus Amphipholis. Additionally, we obtained partial sequences of the cytochrome c oxidase subunit I gene (COI) (513 bp) and compared them with sequences from Australian A. minuta and 13 other species of Amphiuridae. As a result, intraspecific pairwise distance was 0.4% between two Korean individuals and intraspecific distance between the Australian and the Korean populations was 2.6-2.8%, which indicates they should be considered as the same species. Ultimately, 15 species of the family Amphiuridae have currently been recorded in Korea, including A. minuta.
Keywords
Echinodermata; morphology; ophiuroids; taxonomy; COI;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Baker AN, 1979. Some Ophiuroidea from the Tasman Sea and adjacent waters. New Zealand Journal of Zoology, 6:21-51. https://doi.org/10.1080/03014223.1979.10428345   DOI
2 Boissin E, Hoareau TB, Paulay G, Bruggemann JH, 2017. DNA barcoding of reef brittle stars (Ophiuroidea, Echinodermata) from the southwestern Indian Ocean evolutionary hot spot of biodiversity. Ecology and Evolution, 7:11197-11203. https://doi.org/10.1002/ece3.3554   DOI
3 Clark AM, 1970. Notes on the family Amphiuridae (Ophiuroidea). Bulletin of the British Museum of Natural History (Zoology), 19:1-81. https://doi.org/10.5962/bhl.part.24085   DOI
4 Clark HL, 1938. Echinoderms from Australia, an account of collections made in 1929 and 1932. Memoirs of the Museum of Comparative Zoology at Harvard College, 55:1-597.
5 Felsenstein J, 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39:783-791. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x   DOI
6 Hebert PDN, Cywinska A, Ball SL, deWaard JR, 2003. Biological identifications through DNA barcodes. Proceedings of the Royal Society of B: Biological Sciences, 270:313-321. https://doi.org/10.1098/rspb.2002.2218   DOI
7 Hoareau TB, Boissin E, 2010. Design of phylum-specific hybrid primers for DNA barcoding: addressing the need for efficient COI amplification in the Echinodermata. Molecular Ecology Resources, 10:960-967. https://doi.org/10.1111/j.1755-0998.2010.02848.x   DOI
8 Hugall AF, O'Hara TD, Hunjan S, Nilsen R, Moussalli A, 2016. An exon-capture system for the entire class Ophiuroidea. Molecular Biology and Evolution, 33:281-294. https://doi.org/10.1093/molbev/msv216   DOI
9 Kumar S, Stecher G, Tamura K, 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33:1870-1874. https://doi.org/10.1093/molbev/msw054   DOI
10 Layton KKS, Corstorphine EA, Hebert PDN, 2016. Exploring Canadian echinoderm diversity through DNA barcodes. PLoS ONE, 11:e0166118. https://doi.org/10.1371/journal.pone.0166118   DOI
11 Miller SE, Hausmann A, Hallwachs W, Janzen DH, 2016. Advancing taxonomy and bioinventories with DNA barcodes. Philosophical Transactions of the Royal Society B: Biological Sciences, 371:20150339. https://doi.org/10.1098/rstb.2015.0339   DOI
12 Okanishi M, Fujita T, 2013. Molecular phylogeny based on increased number of species and genes revealed more robust family-level systematics of the order Euryalida (Echinodermata: Ophiuroidea). Molecular Phylogenetics and Evolution, 69:566-580. https://doi.org/10.1016/j.ympev.2013.07.021   DOI
13 Perseke M, Bernhard D, Fritzsch G, Brummer F, Stadler PF, Schlegel M, 2010. Mitochondrial genome evolution in Ophiuroidea, Echinoidea, and Holothuroidea: insights in phylogenetic relationships of Echinodermata. Molecular Phylogenetics and Evolution, 56:201-211. http://dx.doi.org/10.1016/j.ympev.2010.01.035   DOI
14 Shin S, 2012. Brittle star I: Echinodermata: Asterozoa: Ophiuroidea. Invertebrate fauna of Korea, Vol. 32, No. 3. National Institute of Biological Resources, Incheon, pp. 1-143.
15 Puillandre N, Lambert A, Brouillet S, Achaz G, 2012. ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Molecular Ecology, 21:1864-1877. https://doi.org/10.1111/j.1365-294X.2011.05239.x   DOI
16 Rowe FWE, Gates J, 1995. Echinodermata. In: Zoological Catalogue of Australia, Vol. 33 (Ed., Wells A). CSIRO, Melbourne, pp. 1-510.
17 Saitou N, Nei M, 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4:406-425. https://doi.org/10.1093/oxfordjournals.molbev.a040454   DOI
18 Stohr S, O'Hara TD, Thuy B, 2012a. Global diversity of brittle stars (Echinodermata: Ophiuroidea). PLoS ONE, 7:e31940. https://doi.org/10.1371/journal.pone.0031940   DOI
19 Stohr S, Sautya S, Ingole B, 2012b. Brittle stars (Echinodermata: Ophiuroidea) from seamounts in the Andaman Sea (Indian Ocean): first account, with descriptions of new species. Journal of the Marine Biological Association of the United Kingdom, 92:1195-1208. https://doi.org/10.1017/S0025315412000240   DOI
20 Stohr S, O'Hara T, Thuy B, 2019. World Ophiuroidea database [Internet]. World Register of Marine Species, Accessed 3 Mar 2019, .
21 Uthicke S, Byrne M, Conand C, 2010. Genetic barcoding of commercial Beche-de-mer species (Echinodermata: Holothuroidea). Molecular Ecology Resources, 10:634-646. https://doi.org/10.1111/j.1755-0998.2009.02826.x   DOI
22 Ward RD, Holmes BH, O'Hara TD, 2008. DNA barcoding discriminates echinoderm species. Molecular Ecology Resources, 8:1202-1211. https://doi.org/10.1111/j.1755-0998.2008.02332.x   DOI