Browse > Article
http://dx.doi.org/10.14400/JDC.2021.19.10.403

A Heuristic-Based Algorithm for Maximum k-Club Problem  

Kim, SoJeong (Department of Applied Mathematics, Kongju National University)
Kim, ChanSoo (Department of Applied Mathematics, Kongju National University)
Han, KeunHee (Department of Applied Mathematics, Kongju National University)
Publication Information
Journal of Digital Convergence / v.19, no.10, 2021 , pp. 403-410 More about this Journal
Abstract
Given an undirected simple graph, k-club is one of the proposed structures to model social groups that exist in various types in Social Network Analysis (SNA). Maximum k-Club Problem (MkCP) is to find a k-club of maximum cardinality in a graph. This paper introduces a Genetic Algorithm called HGA+DROP which can be used to approximate maximum k-club in graphs. Our algorithm modifies the existing k-CLIQUE & DROP algorithm and utilizes Heuristic Genetic Algorithms (HGA) to obtain multiple k-clubs. We experiment on DIMACS graphs for k = 2, 3, 4 and 5 to compare the performance of the proposed algorithm with existing algorithms.
Keywords
k-club; MkCP(Maximum k-clun problem); Heuristic algorithm; Heuristic genetic algorithm; DIMACS;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. M. Bourjolly, G. Laporte & G. Pesant. (2002). An exact algorithm for the maximum k-club problem in an undirected graph. European Journal of Operational Research, 138(1), 21-28. https://doi.org/10.1016/S0377-2217(01)00133-3   DOI
2 R. J. Mokken. (1979). Cliques, clubs and clans. Quality & Quantity, 13(2), 161-173.   DOI
3 S. Shahram, & S. Butenko. (2013). Algorithms for the maximum k-club problem in graphs. Journal of Combinatorial Optimization, 26(3), 520-554. https://doi.org/10.1007/s10878-012-9473-z   DOI
4 M. T. Almeida & F. D. Carvalho. (2014). An analytical comparison of the LP relaxations of integer models for the k-club problem. European Journal of Operational Research, 232(3), 489-498. https://doi.org/10.1016/j.ejor.2013.08.004   DOI
5 A. Veremyev & V. Boginski. (2012). Identifying large robust network clusters via new compact formulations of maximum k-club problems. European Journal of Operational Research, 218(2), 316-326. https://doi.org/10.1016/j.ejor.2011.10.027   DOI
6 M. T. Almeida & F. D. Carvalho. (2012). Integer models and upper bounds for the 3-club problem. Networks, 60(3), 155-166. https://doi.org/10.1002/net.21455   DOI
7 S. Laan et al. (2012). Fast finding of 2-clubs. University of Amsterdam, Amsterdam.
8 S. Hartung, C. Komusiewicz, A. Nichterlein & O. Suchy. (2015). On structural parameterizations for the 2-club problem. Discrete Applied Mathematics, 185, 79-92. https://doi.org/10.1016/j.dam.2014.11.026   DOI
9 E. Marchiori. (1998). A simple heuristic based genetic algorithm for the maximum clique problem. In Symposium on Applied Computing: Proceedings of the 1998 ACM symposium on Applied Computing (Vol. 27, pp. 366-373).
10 D. A. Bader. H. Meyerhenke, P. Sanders & D. Wagner. (2011). 10th DIMACS Implementation Challenge-Graph Partitioning and Graph Clustering. Georgia : Georgia Institute of Technology
11 M. S. Chang, L.J. Hung. C. R. Lin & P. C. su. (2013). Finding large k-clubs in undirected graphs. Computing, 95(9), 739-758. DOI : 10.1007/s00607-012-0263-3   DOI
12 M. T. Almeida & F. D. Carvalho. (2014). Two-phase heuristics for the k-club problem. Computers & operations research, 52, 94-104. https://doi.org/10.1016/j.cor.2014.07.006.   DOI
13 F. M. Pajouh & B. Balasundaram. (2012). On inclusionwise maximal and maximum cardinality k-clubs in graphs. Discrete Optimization, 9(2), 84-97. https://doi.org/10.1016/j.disopt.2012.02.002   DOI
14 W. Stanley & K. Faust. (1994). Social network analysis: Methods and applications. Cambridge : Cambridge University Press
15 B. Balabhaskar, S. Butenko & S. Trukhanov. (2005). Novel approaches for analyzing biological networks. Journal of Combinatorial Optimization, 10(1), 23-39. https://doi.org/10.1007/s10878-005-1857-x   DOI
16 Z. Michalewicz. (2013). Genetic algorithms+ data structures= evolution programs. Berlin : Springer Science & Business Media.
17 B. Vladimir, S. Butenko & os P. M. Pardalos. (2006). Mining market data: A network approach. Computers & Operations Research, 33(11), 3171-3184. https://doi.org/10.1016/j.cor.2005.01.027   DOI
18 R. D. Alba. (1973). A graph-theoretic definition of a sociometric clique. Journal of Mathematical Sociology, 3(1), 113-126.   DOI
19 B. Balasumdaram & F. M. Pajouh. (2013). Graph theoretic clique relaxations and applications. Handbook of combinatorial optimization, 1559-1598.
20 B. Balasundaram, S. Butenko & S. Trukhanov. (2005). Novel approaches for analyzing biological networks. Journal of Combinatorial Optimization, 10(1), 23-39. https://doi.org/10.1007/s10878-005-1857-x   DOI
21 M. T. Almeida & F. D. Carvalho. (2012). A comparison of integer models for the k-club problem. Working Paper CIO 3/2012, Universidade de Lisboa.
22 B. Balabhaskar, S. Butenko & I. V. Hicks. (2011). Clique relaxations in social network analysis: The maximum k-plex problem. Operations Research, 59(1), 133-142. https://doi.org/10.1287/opre.1100.0851   DOI
23 J. M. Bourjolly, G. Laporte & G. Pesant. (2000). Heuristics for finding k-clubs in an undirected graph. Computers & Operations Research, 27(6), 559-569. https://doi.org/10.1016/S0305-0548(99)00047-7   DOI