Browse > Article
http://dx.doi.org/10.14400/JDC.2019.17.10.233

A review of space perception applicable to artificial intelligence robots  

Lee, Young-Lim (Dept. of Psychology & Psychotherapy, Dankook University)
Publication Information
Journal of Digital Convergence / v.17, no.10, 2019 , pp. 233-242 More about this Journal
Abstract
Numerous space perception studies have shown that Euclidean 3-D structure cannot be recovered from binocular stereopsis, motion, combination of stereopsis and motion, or even with combined multiple sources of optical information. Humans, however, have no difficulties to perform the task-specific action despite of poor shape perception. We have applied humans skill and capabilities to artificial intelligence and computer vision but those machines are still far behind from humans abilities. Thus, we need to understand how we perceive depth in space and what information we use to perceive 3-D structure accurately to perform. The purpose of this paper was to review space perception literatures to apply humans abilities to artificial intelligence robots more advanced in future.
Keywords
Convergence; 3-D space; shape perception; robotics; artificial intelligence; computer vision;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 C. Yi & J. Cho. (2017). A Real-time Plane Estimation in Virtual Reality Using a RGB-D Camera in Indoors. Journal of Digital Convergence, 14(11), 319-324. DOI : 10.14400/jdc.2016.14.11.319   DOI
2 J. Lee & K. Kim. (2014). Real-time individual tracking of multiple moving objects for projection based augmented visualization. Journal of Digital Convergence, 12(11), 357-364. DOI : 10.14400/jdc.2014.12.11.357   DOI
3 W. Blumenfeld. (1913). Untersuchungen uber die scheinbare Gro$\ss$e im Sehraume [Investigation of the apparent size in visual space]. Zeitschrift fur Psychologie, 65, 241-404. DOI : 10.1007/978-3-662-01995-5_1   DOI
4 R. K. Luneburg. (1950). The metric of binocular visual space. Journal of the Optical Society of America, 40(10), 627-642. DOI : 10.1364/josa.40.000627   DOI
5 T. Indow, E. Inoue & K. Matsushima. (1962a). An experimental study of the Luneburg theory of binocular space perception: 1. The 3- and 4-point experiments. Japanese Psychological Research, 4(1), 6-16. DOI : 10.4992/psycholres1954.4.6   DOI
6 T. Indow, E. Inoue & K. Matsushima. (1962b). An experimental study of the Luneburg theory of binocular space perception: 2. The alley experiments. Japanese Psychological Research, 4(1), 17-24. DOI : 10.4992/psycholres1954.4.17   DOI
7 A. A. Blank. (1961). Curvature of binocular visual space: An Experiment. Journal of the Optical Society of America, 51(3), 335-339. DOI : 10.1364/josa.51.000335   DOI
8 S. A. Linkenauger, H. H. Bulthoff & B. J. Mohler. (2015). Virtual arm's reach influences perceived distances but only after experience reaching. Neuropsychologia, 70, 393-40. DOI : 10.1016/j.neuropsychologia.2014.10.034   DOI
9 E. Borjesson & M. Lind. (1996). The effect of polar projection on the perception of Euclidean structure from motion. Perception & Psychophysics, 58(6), 871-882. DOI : 10.3758/bf03205489   DOI
10 J. M. Foley. (1966). Locus of perceived equidistance as a function of viewing distance. Journal of the Optical Society of America, 56(6), 822-827. DOI : 10.1364/josa.56.000822   DOI
11 G. P. Bingham, R. Coats & M. Mon-Williams. (2007). Unnatural prehension to virtual objects is not inevitable if calibration is allowed. Neuropsychologia, 45(2), 288-294. DOI : 10.1016/j.neuropsychologia.2006.07.011   DOI
12 G. P. Bingham, F. Z. Zaal, D. Robin & J. A. Shull. (2000). Distortions in definite distance and shape perception as measured by reaching without and with haptic feedback. Journal of Experimental Psychology, 26(4), 1436-1460. DOI : 10.1037/0096-1523.26.4.1436   DOI
13 T. L. Ooi, B. Wu & Z. J. He. (2001). Distance determined by the angular declination below the horizon. Nature, 414(6860), 197-200. DOI : 10.1038/35102562   DOI
14 M. Mon-Williams & G. P. Bingham. (2007). Calibrating reach distance to visual targets. Journal of Experimental Psychology: Human Perception and Performance, 33(3), 645-656. DOI : 10.1037/0096-1523.33.3.645   DOI
15 Y. Lee, C. Crabtree, J. F. Norman & G. P. Bingham. (2008). Poor shape perception is the reason reaches-to-grasp are visually guided on-line. Perception & Psychophysics, 70(6), 1032-1046. DOI : 10.3758/pp.70.6.1032   DOI
16 J. M. Loomis, J. A. Da Silva, J. W. Philbeck & S. S. Fukusima. (1996). Visual perception of location and distance. Current Direction in Psychological Science, 5(3), 72-77. DOI : 10.1111/1467-8721.ep10772783   DOI
17 J. M. Foley. (1972). The size-distance relation and intrinsic geometry of visual space: Implications for processing. Vision Research, 12(2), 323-332. DOI : 10.1016/0042-6989(72)90121-6   DOI
18 A. S. Gilinsky. (1951). Perceived size and distance in visual space. Psychological Review, 58(6), 460-482. DOI : 10.1037/h0061505   DOI
19 J. J. Koenderink, A. J. van Doorn & J. S. Lappin. (2000). Direct measurement of the curvature of visual space. Perception, 29(1), 69-79. DOI : 10.1068/p2921   DOI
20 M. Wagner (1985). The metric of visual space. Perception & Psychophysics, 38(6), 483-495. DOI : 10.3758/bf03207058   DOI
21 E. B. Johnston. (1991). Systematic distortions of shape from stereopsis. Vision Research, 31(7-8), 1351-1360. DOI : 10.1016/0042-6989(91)90056-b   DOI
22 H. Wallach & D. N. O'Connell. (1953). The kinetic depth effect. Journal of Experimental Psychology, 45(4), 205-217. DOI : 10.1037/h0056880   DOI
23 S. Ullman. (1979). The interpretation of structure from motion. Proceedings of the Royal Society of London. Series B, Biological Sciences, 203(1153), 405-426. DOI : 10.1098/rspb.1979.0006   DOI
24 J. T. Todd & P. Bressan. (1990). The perception of 3-dimensional affine structure from minimal apparent motion sequences. Perception & Psychophysics, 48(5), 419-430. DOI : 10.3758/bf03211585   DOI
25 J. F. Norman & J. S. Lappin. (1992). The detection of surface curvatures defined by optical motion. Perception & Psychophysics, 51(4), 386-396. DOI : 10.3758/bf03211632   DOI
26 R. M. Farag, M. S. Saad, H. Emara & A. Bahgat. (2018, October.). Three-Dimensional Localization of Known Objects for Robot Arm Application based on a Particle Swarm Optimized Low End Stereo Vision System. In IECON 2018-44th Annual Conference of the IEEE Industrial Electronics Society (pp. 2736-2741). IEEE. DOI : 10.1109/iecon.2018.8592716   DOI
27 C. J. Lin & B. H. Woldegiorgis. (2017). Egocentric distance perception and performance of direct pointing in stereoscopic displays. Applied Ergonomics, 64(43), 66-74. DOI : 10.1016/j.apergo.2017.05.007   DOI
28 R. Bajcsy, Y. Aloimonos & J. K. Tsotsos. (2018). Revisiting active perception. Autonomous Robots, 42(2), 177-196. DOI : 10.1007/s10514-017-9615-3   DOI
29 J. T. Todd & J. F. Norman. (1991). The visual perception of smoothly curved surfaces from minimal apparent motion sequences. Perception & Psychophysics, 50(6), 509-523. DOI : 10.3758/bf03207535   DOI
30 V. Cornilleau-peres & J. Droulez. (1989). Visual perception of surface curvature: Psychophysics of curvature detection induced by motion parallax. Perception & Psychophysics, 46(4), 351-364. DOI : 10.3758/bf03204989   DOI
31 J. F. Norman & J. T. Todd. (1993). The perceptual analysis of structure from motion for rotating objects undergoing affine stretching transformations. Perception & Psychophysics, 53(3), 279-291. DOI : 10.3758/bf03205183   DOI
32 W. Richards. (1985). Structure from stereo and motion. Journal of the Optical Society of America A, 2(2), 343-349. DOI : 10.1364/JOSAA.2.000343   DOI
33 J. S. Tittle & M. L. Braunstein. (1983). Recovery of 3-D shape from binocular disparity and structure from motion. Perception & Psychophysics, 54(2), 157-169. DOI : 10.3758/bf03211751   DOI
34 J. S. Tittle, J. T. Todd, V. J. Perotti & J. F. Norman. (1995). Systematic distortion of perceived three-dimensional structure from motion and binocular stereopsis. Journal of Experimental Psychology: Human Perception and Performance, 21(3), 663-678. DOI : 10.1037//0096-1523.21.3.663   DOI
35 J. F. Norman & J. T. Todd. (1996). The discriminability of local surface structure. Perception, 25(4), 381-398. DOI : 10.1068/p250381   DOI
36 J. F. Norman, J. T. Todd & F. Phillips. (1995). The visual perception of surface orientation from multiple sources of optical information. Perception & Psychophysics, 57(5), 629-636. DOI : 10.3758/bf03213268   DOI