Browse > Article
http://dx.doi.org/10.7465/jkdi.2016.27.2.429

Changes rate in selection of Yorkshire pig for productive traits using the integrated test records among GGPs  

Cho, Kwang-Hyun (National Institute of Animal Science, RDA)
Kim, Sung-Hoon (Pigene Korea Co., LTD.)
Park, Kyung-Do (Department of Animal Biotechnology, Chonbuk National University)
Publication Information
Journal of the Korean Data and Information Science Society / v.27, no.2, 2016 , pp. 429-435 More about this Journal
Abstract
Heritability estimates for daily gain (g), backfat thickness (mm), days to 90kg (day), loin eye depth (mm) and meat percent (%) were 0.40, 0.44, 0.40, 0.25 and 0.48, respectively. Estimates of correlation between breeding value and rank for meat productivity traits by model 1 and 2 were 0.995 1.000 and 0.991 1.000, respectively and highly significant (p< 0.0001), and they were almost identical to the breeding values estimated by different farms. When top 5% and top 10% animals were selected by meat productive traits at different farms, markedly different animals were selected by farms since the selected improvement traits in each farm maintaining closed herds were different. Therefore, it seems to be desirable that superior pigs should be selected after the establishment of evaluation system for genetic performance at national level using the integrated data obtained from various farms.
Keywords
Backfat thickness; daily gain; days to 90kg; loin eye depth; meat percent;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Chen, P. and Baas, T. J. (2002). Genetic parameters and trends for lean growth rate and its components in U.S. Yorkshire, Duroc, Hampshire, and Landrace pigs. Journal of Animal Science, 80, 2062-2070.   DOI
2 Cho, K. H., Lee, J. H. and Park, K. D. (2014). Adjustment of heterogeneous variance by milk production level of dairy herd. Journal of the Korean Data & Information Science Society, 25, 737-743.   DOI
3 Choi, C. S., Lee, I. J., Cho, K. H., Seo, K. S. and Lee, J. G. (2004). Estimation of genetic parameters for economic traits in swine. Korean Journal of Animal Science, 46, 145-154.
4 Groeneveld, E. (1990). PEST user's manual. Institute of Animal Husbandry and Animal Behaviour, Federal Agricultural Research Centre (FAL), Germany.
5 Groeneveld, E., Kovac, M. and Mielenz, N. (2008). VCE user's guide and reference manual version 6.0, Institute of Farm Animal Genetics, Friedrich Loeffler Institute (FLI), Germany.
6 Henderson, C. R. (1975). Best linear unbiased estimation and prediction under a selection model. Biometrics, 31, 423-447.   DOI
7 Johnson, Z. B. and Nugent, R. A. (2003). Heritability of body length and measures of body density and their relationship to backfat thickness and loin muscle area in swine. Journal of Animal Science, 81, 1943-1949.   DOI
8 Kang, H. S., Nam, K. C., Yunxiao, L., Kim, K. T., Lee, M. S., Yoon, J. T. and Seo, K. S. (2012). Estimation of genetic parameters and genetic trends for major economic traits in swine. Journal of Animal Science and Technology, 54, 89-94.   DOI
9 Lutaaya, E. and Misztal, I. (2001). Genetic parameter estimates from joint evaluation of purebreds and crossbreds in swine using the crossbred model. Journal of Animal Science, 79, 3002-3007.   DOI
10 NIAS (National Institute of Animal Science). (2010). Report of estimation of breeding value in swine, The Rural Development Administration(RDA), Korea.
11 Song, K. L., Kim, B. W., Roh, S. H., Sun, D. W., Kim, H. S., Lee, D. H., Jeon, J. T. and Lee, J. G. (2010). Estimation of genetic parameters for growth traits in Yorkshire. Journal of Agriculture & Life Science, 44, 41-52.
12 Stern, S., Johansson, K., Rydhmer, L. and Andersson, K. (1994). Performance testing of pigs for lean tissue growth rate in a selection experiment with low and high protein diets: II. Correlated responses of lean percentage and growth rate. Acta Agriculturae Scandinavica, 44, 1-7.   DOI