Browse > Article
http://dx.doi.org/10.5056/jnm.2011.17.3.213

Stress-Related Alterations of Visceral Sensation: Animal Models for Irritable Bowel Syndrome Study  

Larauche, Muriel (CURE/Digestive Diseases Research Center and Center for Neurobiology of Stress, Digestive Diseases Division, Department of Medicine, David Geffen School of Medicine, UCLA and VA Greater Los Angeles Healthcare System)
Mulak, Agata (CURE/Digestive Diseases Research Center and Center for Neurobiology of Stress, Digestive Diseases Division, Department of Medicine, David Geffen School of Medicine, UCLA and VA Greater Los Angeles Healthcare System)
Tache Yvette (CURE/Digestive Diseases Research Center and Center for Neurobiology of Stress, Digestive Diseases Division, Department of Medicine, David Geffen School of Medicine, UCLA and VA Greater Los Angeles Healthcare System)
Publication Information
Journal of Neurogastroenterology and Motility / v.17, no.3, 2011 , pp. 213-234 More about this Journal
Abstract
Stressors of different psychological, physical or immune origin play a critical role in the pathophysiology of irritable bowel syndrome participating in symptoms onset, clinical presentation as well as treatment outcome. Experimental stress models applying a variety of acute and chronic exteroceptive or interoceptive stressors have been developed to target different periods throughout the lifespan of animals to assess the vulnerability, the trigger and perpetuating factors determining stress influence on visceral sensitivity and interactions within the brain-gut axis. Recent evidence points towards adequate construct and face validity of experimental models developed with respect to animals' age, sex, strain differences and specific methodological aspects such as non-invasive monitoring of visceromotor response to colorectal distension as being essential in successful identification and evaluation of novel therapeutic targets aimed at reducing stress-related alterations in visceral sensitivity. Underlying mechanisms of stress-induced modulation of visceral pain involve a combination of peripheral, spinal and supraspinal sensitization based on the nature of the stressors and dysregulation of descending pathways that modulate nociceptive transmission or stress-related analgesic response.
Keywords
Irritable bowel syndrome; Models, animal; Pain;
Citations & Related Records

Times Cited By SCOPUS : 5
연도 인용수 순위
  • Reference
1 Martinez V, Wang L, Tache Y. Proximal colon distension induces Fos expression in the brain and inhibits gastric emptying through capsaicin-sensitive pathways in conscious rats. Brain Res 2006;1086:168-180.   DOI   ScienceOn
2 Monnikes H, Ruter J, Konig M, et al. Differential induction of c-fos expression in brain nuclei by noxious and non-noxious colonic distension: role of afferent C-fibers and 5-$HT_3$ receptors. Brain Res 2003;966:253-264.   DOI   ScienceOn
3 Murphy AZ, Suckow SK, Johns M, Traub RJ. Sex differences in the activation of the spinoparabrachial circuit by visceral pain. Physiol Behav 2009;97:205-212.   DOI   ScienceOn
4 Wu JC, Ziea ET, LAo L, et al. Effect of electroacupuncture on visceral hyperalgesia, serotonin and fos expression in an animal model of irritable bowel syndrome. J Neurogastroenterol Motil 2010;16:306-314.   DOI   ScienceOn
5 Stam R, Ekkelenkamp K, Frankhuijzen AC, Bruijnzeel AW, Akkermans LM, Wiegant VM. Long-lasting changes in central nervous system responsivity to colonic distention after stress in rats. Gastroenterology 2002;123:1216-1225.   DOI   ScienceOn
6 Traub RJ, Silva E, Gebhart GF, Solodkin A. Noxious colorectal distention induced-c-Fos protein in limbic brain structures in the rat. Neurosci Lett 1996;215:165-168.   DOI   ScienceOn
7 Lazovic J, Wizos HF, Yang QX, et al. Regional activation in the rat brain during visceral stimulation detected by c-fos expression and fMRI. Neurogastroenterol Motil 2005;17:548-556.   DOI   ScienceOn
8 Wang Z, Bradesi S, Maarek JM, et al. Regional brain activation in conscious, nonrestrained rats in response to noxious visceral stimulation. Pain 2008;138:233-243.   DOI   ScienceOn
9 Selye H. A syndrome produced by diverse nocuous agents. Nature 1936;138:32.
10 Cannon WB. Bodily Changes in Pain, Hunger, Fear and Rage: an account of recent researches into the function of emotional excitement. New York and London: D. Appleton and company 1915:311.
11 Chrousos GP. Stress and disorders of the stress system. Nat Rev Endocrinol 2009;5:374-381.   DOI   ScienceOn
12 Caso JR, Leza JC, Menchen L. The effects of physical and psychological stress on the gastro-intestinal tract: lessons from animal models. Curr Mol Med 2008;8:299-312.   DOI   ScienceOn
13 Friedman EM, Irwin MR. A role for CRH and the sympathetic nervous system in stress-induced immunosuppression. Ann N Y Acad Sci 1995;771:396-418.   DOI   ScienceOn
14 Yorimitsu M, Okada S, Yamaguchi-Shima N, Shimizu T, Arai J, Yokotani K. Role of brain adrenoceptors in the corticortopin-releasing factor-induced central activation of sympatho-adrenomedullary outflow in rats. Life Sci 2008;82:487-494.   DOI   ScienceOn
15 Usui D, Yamaguchi-Shima N, Okada S, Shimizu T, Wakiguchi H, Yokotani K. Selective activation of the sympathetic ganglia by centrally administered corticotropin-releasing factor in rats. Auton Neurosci 2009;146:111-114.   DOI   ScienceOn
16 Tsatsanis C, Dermitzaki E, Venihaki M, et al. The corticotropin- releasing factor (CRF) family of peptides as local modulators of adrenal function. Cell Mol Life Sci 2007;64:1638-1655.   DOI   ScienceOn
17 Valentino RJ, Foote SL, Page ME. The locus coeruleus as a site for integrating corticotropin-releasing factor and noradrenergic mediation of stress responses. Ann N Y Acad Sci 1993;697:173-188.   DOI
18 Kosoyan HP, Wei JY, Tache Y. Intracisternal sauvagine is more potent than corticotropin-releasing factor to decrease gastric vagal efferent activity in rats. Peptides 1999;20:851-858.   DOI   ScienceOn
19 Wiersma A, Bohus B, Koolhaas JM. Corticotropin-releasing hormone microinfusion in the central amygdala diminishes a cardiac parasympathetic outflow under stress-free conditions. Brain Res 1993;625:219-227.   DOI   ScienceOn
20 Friedman EM, Irwin MR. Modulation of immune cell function by the autonomic nervous system. Pharmacol Ther 1997;74:27-38.   DOI   ScienceOn
21 Tache Y. The parasympathetic nervous system in the pathophysiology of the gastrointestinal tract. In: Bolis CL, Licinio J, Govoni S, eds. Handbook of autonomic nervous system in health and diseases. Chapter 15. New York: Marcel Dekker, Inc. 2002;463-503.
22 Klueh U, Kreutzer DL. Murine model of implantable glucose sensors: a novel model for glucose sensor development. Diabetes Technol Ther 2005;7:727-737.   DOI   ScienceOn
23 Bradesi S, Schwetz I, Ennes HS, et al. Repeated exposure to water avoidance stress in rats: a new model for sustained visceral hyperalgesia. Am J Physiol Gastrointest Liver Physiol 2005;289:G42-G53.   DOI   ScienceOn
24 Welting O, Van Den Wijngaard RM, De Jonge WJ, Holman R, Boeckxstaens GE. Assessment of visceral sensitivity using radio telemetry in a rat model of maternal separation. Neurogastroenterol Motil 2005;17:838-845.   DOI   ScienceOn
25 Nijsen MJ, Ongenae NG, Coulie B, Meulemans AL. Telemetric animal model to evaluate visceral pain in the freely moving rat. Pain 2003;105:115-123.   DOI   ScienceOn
26 Marois Y, Roy R, Vidovszky T, et al. Histopathological and immunological investigations of synthetic fibres and structures used in three prosthetic anterior cruciate ligaments: in vivo study in the rat. Biomaterials 1993;14:255-262.   DOI   ScienceOn
27 Arvidsson S, Larsson M, Larsson H, Lindstrom E, Martinez V. Assessment of visceral pain-related pseudo-affective responses to colorectal distension in mice by intracolonic manometric recordings. J Pain 2006;7:108-118.   DOI   ScienceOn
28 Tammpere A, Brusberg M, Axenborg J, Hirsch I, Larsson H, Lindstrom E. Evaluation of pseudo-affective responses to noxious colorectal distension in rats by manometric recordings. Pain 2005;116:220-226.   DOI   ScienceOn
29 Larauche M, Gourcerol G, Million M, Adelson DW, Taché Y. Repeated psychological stress-induced alterations of visceral sensitivity and colonic motor functions in mice: Influence of surgery and postoperative single housing on visceromotor responses. Stress 2010;13:343-354.
30 Al-Chaer ED, Kawasaki M, Pasricha PJ. A new model of chronic visceral hypersensitivity in adult rats induced by colon irritation during postnatal development. Gastroenterology 2000;119:1276-1285.   DOI   ScienceOn
31 Zhang XJ, Li Z, Chung EK, et al. Activation of extracellular signal-regulated protein kinase is associated with colorectal distension-induced spinal and supraspinal neuronal response and neonatal maternal separation-induced visceral hyperalgesia in rats. J Mol Neurosci 2009;37:274-287.   DOI   ScienceOn
32 Rosztoczy A, Fioramonti J, Jarmay K, Barreau F, Wittmann T, Bueno L. Influence of sex and experimental protocol on the effect of maternal deprivation on rectal sensitivity to distension in the adult rat. Neurogastroenterol Motil 2003;15:679-686.   DOI   ScienceOn
33 Meaney MJ, Szyf M, Seckl JR. Epigenetic mechanisms of perinatal programming of hypothalamic-pituitary-adrenal function and health. Trends Mol Med 2007;13:269-277.   DOI   ScienceOn
34 Sudo N, Chida Y, Aiba Y, et al. Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J Physiol 2004;558:263-275.   DOI   ScienceOn
35 O'Mahony SM, Hyland NP, Dinan TG, Cryan JF. Maternal separation as a model of brain-gut axis dysfunction. Psychopharmacology (Berl) 2011;214:71-88.   DOI
36 Plotsky PM, Meaney MJ. Early, postnatal experience alters hypothalamic corticotropin-releasing factor (CRF) mRNA, median eminence CRF content and stress-induced release in adult rats. Brain Res Mol Brain Res 1993;18:195-200.   DOI   ScienceOn
37 Coutinho SV, Plotsky PM, Sablad M, et al. Neonatal maternal separation alters stress-induced responses to viscerosomatic nociceptive stimuli in rat. Am J Physiol Gastrointest Liver Physiol 2002;282:G307-G316.
38 Barreau F, Cartier C, Ferrier L, Fioramonti J, Bueno L. Nerve growth factor mediates alterations of colonic sensitivity and mucosal barrier induced by neonatal stress in rats. Gastroenterology 2004;127:524-534.   DOI   ScienceOn
39 Lin C, Al-Chaer ED. Long-term sensitization of primary afferents in adult rats exposed to neonatal colon pain. Brain Res 2003;971:73-82.   DOI   ScienceOn
40 Wang G, Ji Y, Lidow MS, Traub RJ. Neonatal hind paw injury alters processing of visceral and somatic nociceptive stimuli in the adult rat. J Pain 2004;5:440-449.   DOI   ScienceOn
41 LaPrairie JL, Murphy AZ. Long-term impact of neonatal injury in male and female rats: Sex differences, mechanisms and clinical implications. Front Neuroendocrinol 2010;31:193-202.   DOI   ScienceOn
42 LaPrairie JL, Murphy AZ. Neonatal injury alters adult pain sensitivity by increasing opioid tone in the periaqueductal gray. Front Behav Neurosci 2009;3:31.
43 Patel S, Hillard CJ. Adaptations in endocannabinoid signaling in response to repeated homotypic stress: a novel mechanism for stress habituation. Eur J Neurosci 2008;27:2821-2829.   DOI   ScienceOn
44 Larauche M, Mulak A, Yuan P-Q, Kanauchi O, Tache Y. Stress-induced visceral analgesia assessed non-invasively in rats is enhanced by prebiotic. World J Gastroenterol 2011 (In press)
45 Green PG, Alvarez P, Gear RW, Mendoza D, Levine JD. Further validation of a model of fibromyalgia syndrome in the rat. J Pain Published Online First: 8 Apr 2011. doi:10.1016/j.jpain.2011.01.006
46 Zheng J, Babygirija R, Bulbul M, Cerjak D, Ludwig K, Takahashi T. Hypothalamic oxytocin mediates adaptation mechanism against chronic stress in rats. Am J Physiol Gastrointest Liver Physiol 2010;299:G946-G953.   DOI   ScienceOn
47 Winston JH, Xu GY, Sarna SK. Adrenergic stimulation mediates visceral hypersensitivity to colorectal distension following heterotypic chronic stress. Gastroenterology 2010;138:294-304.   DOI   ScienceOn
48 Savas LS, White DL, Wieman M, et al. Irritable bowel syndrome and dyspepsia among women veterans: prevalence and association with psychological distress. Aliment Pharmacol Ther 2009;29:115-125.   DOI   ScienceOn
49 White DL, Savas LS, Daci K, et al. Trauma history and risk of the irritable bowel syndrome in women veterans. Aliment Pharmacol Ther 2010;32:551-561.   DOI   ScienceOn
50 Cohen H, Jotkowitz A, Buskila D, et al. Post-traumatic stress disorder and other co-morbidities in a sample population of patients with irritable bowel syndrome. Eur J Intern Med 2006;17:567-571.   DOI   ScienceOn
51 Irwin C, Falsetti SA, Lydiard RB, Ballenger JC, Brock CD, Brener W. Comorbidity of posttraumatic stress disorder and irritable bowel syndrome. J Clin Psychiatry 1996;57:576-578.   DOI   ScienceOn
52 Drossman DA, Leserman J, Nachman G, et al. Sexual and physical abuse in women with functional or organic gastrointestinal disorders. Ann Intern Med 1990;113:828-833.   DOI   ScienceOn
53 Keohane J, O'Mahony C, O'Mahony L, O'Mahony S, Quigley EM, Shanahan F. Irritable bowel syndrome-type symptoms in patients with inflammatory bowel disease: a real association or reflection of occult inflammation? Am J Gastroenterol 2010;105:1788, 1789-1794.
54 Bercik P, Wang L, Verdu EF, et al. Visceral hyperalgesia and intestinal dysmotility in a mouse model of postinfective gut dysfunction. Gastroenterology 2004;127:179-187.   DOI   ScienceOn
55 McLean PG, Picard C, Garcia-Villar R, More J, Fioramonti J, Bueno L. Effects of nematode infection on sensitivity to intestinal distension: role of tachykinin NK2 receptors. Eur J Pharmacol 1997;337:279-282.   DOI   ScienceOn
56 Vergnolle N. Postinflammatory visceral sensitivity and pain mechanisms. Neurogastroenterol Motil 2008;20(suppl 1):73-80.
57 Long MD, Drossman DA. Inflammatory bowel disease, irritable bowel syndrome, or what?: a challenge to the functional-organic dichotomy. Am J Gastroenterol 2010;105:1796-1798.   DOI   ScienceOn
58 Van Hoboken EA, Thijssen AY, Verhaaren R, et al. Symptoms in patients with ulcerative colitis in remission are associated with visceral hypersensitivity and mast cell activity. Scand J Gastroenterol Published Online First: 30 May 2011. doi:10.3109/00365521. 2011.579156
59 Burton MB, Gebhart GF. Effects of intracolonic acetic acid on responses to colorectal distension in the rat. Brain Res 1995;672:77-82.   DOI   ScienceOn
60 Palecek J, Willis WD. The dorsal column pathway facilitates visceromotor responses to colorectal distention after colon inflammation in rats. Pain 2003;104:501-507.   DOI   ScienceOn
61 Ji Y, Tang B, Traub RJ. Modulatory effects of estrogen and progesterone on colorectal hyperalgesia in the rat. Pain 2005;117:433-442.   DOI   ScienceOn
62 Traub RJ, Murphy A. Colonic inflammation induces fos expression in the thoracolumbar spinal cord increasing activity in the spinoparabrachial pathway. Pain 2002;95:93-102.   DOI   ScienceOn
63 Coutinho SV, Meller ST, Gebhart GF. Intracolonic zymosan produces visceral hyperalgesia in the rat that is mediated by spinal NMDA and non-NMDA receptors. Brain Res 1996;736:7-15.   DOI   ScienceOn
64 Jarrett ME, Burr RL, Cain KC, Hertig V, Weisman P, Heitkemper MM. Anxiety and depression are related to autonomic nervous system function in women with irritable bowel syndrome. Dig Dis Sci 2003;48:386-394.   DOI   ScienceOn
65 Van Oudenhove L, Coen SJ, Aziz Q. Functional brain imaging of gastrointestinal sensation in health and disease. World J Gastroenterol 2007;13:3438-3445.
66 Seminowicz DA, Mikulis DJ, Davis KD. Cognitive modulation of pain-related brain responses depends on behavioral strategy. Pain 2004;112:48-58.   DOI   ScienceOn
67 Mayer EA, Tillisch K. The brain-gut axis in abdominal pain syndromes. Annu Rev Med 2011;62:381-396.   DOI   ScienceOn
68 Tougas G. The autonomic nervous system in functional bowel disorders. Gut 2000;47(suppl 4):iv78-iv80; discussion iv 87.
69 Keita AV, Söderholm JD. The intestinal barrier and its regulation by neuroimmune factors. Neurogastroenterol Motil 2010;22:718-733.   DOI   ScienceOn
70 Bravo JA, Dinan TG, Cryan JF. Alterations in the central CRF system of two different rat models of comorbid depression and functional gastrointestinal disorders. Int J Neuropsychopharmacol 2011;14:666-683.   DOI   ScienceOn
71 Lemos JC, Zhang G, Walsh T, et al. Stress-hyperresponsive WKY rats demonstrate depressed dorsal raphe neuronal excitability and dysregulated CRF-mediated responses. Neuropsychopharmacology 2011;36:721-734.   DOI   ScienceOn
72 Overstreet DH, Djuric V. A genetic rat model of cholinergic hypersensitivity: implications for chemical intolerance, chronic fatigue, and asthma. Ann N Y Acad Sci 2001;933:92-102.
73 Overstreet DH. The Flinders sensitive line rats: a genetic animal model of depression. Neurosci Biobehav Rev 1993;17:51-68.   DOI   ScienceOn
74 Elsenbruch S, Wang L, Hollerbach S, Schedlowski M, Tougas G. Pseudo-affective visceromotor responses and HPA axis activation following colorectal distension in rats with increased cholinergic sensitivity. Neurogastroenterol Motil 2004;16:801-809.   DOI   ScienceOn
75 Kimura M, Müller-Preuss P, Lu A, et al. Conditional corticotropin- releasing hormone overexpression in the mouse forebrain enhances rapid eye movement sleep. Mol Psychiatry 2010;15:154-165.   DOI   ScienceOn
76 Trimble N, Johnson AC, Foster A, Greenwood-van Meerveld B. Corticotropin-releasing factor receptor 1-deficient mice show decreased anxiety and colonic sensitivity. Neurogastroenterol Motil 2007;19:754-760.   DOI   ScienceOn
77 Million M, Wang L, Stenzel-Poore MP, et al. Enhanced pelvic responses to stressors in female CRF-overexpressing mice. Am J Physiol Regul Integr Comp Physiol 2007;292:R1429-R1438.
78 Stenzel-Poore MP, Cameron VA, Vaughan J, Sawchenko PE, Vale W. Development of Cushing's syndrome in corticotropin-releasing factor transgenic mice. Endocrinology 1992;130:3378-3386.   DOI   ScienceOn
79 Lu A, Steiner MA, Whittle N, et al. Conditional mouse mutants highlight mechanisms of corticotropin-releasing hormone effects on stress-coping behavior. Mol Psychiatry 2008;13:1028-1042.   DOI   ScienceOn
80 Bakshi VP, Kalin NH. Corticotropin-releasing hormone and animal models of anxiety: gene-environment interactions. Biol Psychiatry 2000;48:1175-1198.   DOI   ScienceOn
81 Kolber BJ, Bovle MP, Wieczorek, et al. Transient early-life forebrain corticotropin-releasing hormone elevation causes long-lasting anxiogenic and despair-like changes in mice. J Neurosci 2010;30:2571-2581.   DOI   ScienceOn
82 Deussing JM, Wurst W. Dissecting the genetic effect of the CRH system on anxiety and stress-related behaviour. C R Biol 2005;328:199-212.   DOI   ScienceOn
83 Delic S, Streif S, Deussing JM, et al. Genetic mouse models for behavioral analysis through transgenic RNAi technology. Genes Brain Behav 2008;7:821-830.   DOI   ScienceOn
84 Butler RK, Finn DP. Stress-induced analgesia. Prog Neurobiol 2009;88:184-202.   DOI   ScienceOn
85 Gui X, Carraway RE, Dobner PR. Endogenous neurotensin facilitates visceral nociception and is required for stress-induced antinociception in mice and rats. Neuroscience 2004;126:1023-1032.   DOI   ScienceOn
86 Ji Y, Tang B, Traub RJ. The visceromotor response to colorectal distention fluctuates with the estrous cycle in rats. Neuroscience 2008;154:1562-1567.   DOI   ScienceOn
87 Koch KM, Palmer JL, Noordin N, Tomlinson JJ, Baidoo C. Sex and age differences in the pharmacokinetics of alosetron. Br J Clin Pharmacol 2002;53:238-242.   DOI   ScienceOn
88 Tache Y, Million M, Nelson AG, Lamy C, Wang L. Role of corticotropin-releasing factor pathways in stress-related alterations of colonic motor function and viscerosensibility in female rodents. Gend Med 2005;2:146-154.   DOI   ScienceOn
89 Aloisi AM, Affaitati G, Ceccarelli I, et al. Estradiol and testosterone differently affect visceral pain-related behavioural responses in male and female rats. Eur J Pain 2010;14:602-607.   DOI   ScienceOn
90 Holdcroft A, Sapsed-Byrne S, Ma D, Hammal D, Forsling ML. Sex and oestrous cycle differences in visceromotor responses and vasopressin release in response to colonic distension in male and female rats anaesthetized with halothane. Br J Anaesth 2000;85:907-910.   DOI   ScienceOn
91 Sapsed-Byrne S, Ma D, Ridout D, Holdcroft A. Estrous cycle phase variations in visceromotor and cardiovascular responses to colonic distension in the anesthetized rat. Brain Res 1996;742:10-16.   DOI   ScienceOn
92 Ouyang A, Wrzos HF. Contribution of gender to pathophysiology and clinical presentation of IBS: should management be different in women? Am J Gastroenterol 2006;101(suppl 12):S602-S609.
93 Azpiroz F, Bouin M, Camilleri M, et al. Mechanisms of hypersensitivity in IBS and functional disorders. Neurogastroenterol Motil 2007;19(suppl 1):62-88.
94 Lembo T, Plourde V, Shui Z, et al. Effects of the corticotropin- releasing factor (CRF) on rectal afferent nerves in humans. Neurogastroenterol Motil 1996;8:9-18.   DOI   ScienceOn
95 Nozu T, Kudaira M. Corticotropin-releasing factor induces rectal hypersensitivity after repetitive painful rectal distention in healthy humans. J Gastroenterol 2006;41:740-744.   DOI   ScienceOn
96 McRoberts JA, Coutinho SV, Marvizon JC, et al. Role of peripheral N-methyl-D-aspartate (NMDA) receptors in visceral nociception in rats. Gastroenterology 2001;120:1737-1748.   DOI   ScienceOn
97 Holzer P. Gastrointestinal afferents as targets of novel drugs for the treatment of functional bowel disorders and visceral pain. Eur J Pharmacol 2001;429:177-193.   DOI   ScienceOn
98 Jones RC 3rd, Xu L, Gebhart GF. The mechanosensitivity of mouse colon afferent fibers and their sensitization by inflammatory mediators require transient receptor potential vanilloid 1 and acid-sensing ion channel 3. J Neurosci 2005;25:10981-10989.   DOI   ScienceOn
99 Cregg R, Momin A, Rugiero F, Wood JN, Zhao J. Pain channelopathies. J Physiol 2010;588(Pt 11):1897-1904.
100 Yu YB, Yang J, Zuo XL, Gao LJ, Wang P, Li YQ. Transient receptor potential vanilloid-1 (TRPV1) and ankyrin-1 (TRPA1) participate in visceral hyperalgesia in chronic water avoidance stress rat model. Neurochem Res 2010;35:797-803.   DOI   ScienceOn
101 Winston J, Shenoy M, Medley D, Naniwadekar A, Pasricha PJ. The vanilloid receptor initiates and maintains colonic hypersensitivity induced by neonatal colon irritation in rats. Gastroenterology 2007;132:615-627.   DOI   ScienceOn
102 Ravnefjord A, Brusberg M, Kang D, et al. Involvement of the transient receptor potential vanilloid 1 (TRPV1) in the development of acute visceral hyperalgesia during colorectal distension in rats. Eur J Pharmacol 2009;611:85-91.   DOI   ScienceOn
103 Piche T, Barbara G, Aubert P, et al. Impaired intestinal barrier integrity in the colon of patients with irritable bowel syndrome: involvement of soluble mediators. Gut 2009;58:196-201.   DOI   ScienceOn
104 Ait-Belgnaoui A, Bradesi S, Fioramonti J, Theodorou V, Bueno L. Acute stress-induced hypersensitivity to colonic distension depends upon increase in paracellular permeability: role of myosin light chain kinase. Pain 2005;113:141-147.   DOI   ScienceOn
105 Zhou Q, Zhang B, Verne GN. Intestinal membrane permeability and hypersensitivity in the irritable bowel syndrome. Pain 2009;146:41-46.   DOI   ScienceOn
106 Vicario M, Guilarte M, Alonso C, et al. Chronological assessment of mast cell-mediated gut dysfunction and mucosal inflammation in a rat model of chronic psychosocial stress. Brain Behav Immun 2010;24:1166-1175.   DOI   ScienceOn
107 Santos J, Yang PC, Soderholm JD, Benjamin M, Perdue MH. Role of mast cells in chronic stress induced colonic epithelial barrier dysfunction in the rat. Gut 2001;48:630-636.   DOI   ScienceOn
108 Soderholm JD, Yang PC, Ceponis P, et al. Chronic stress induces mast cell-dependent bacterial adherence and initiates mucosal inflammation in rat intestine. Gastroenterology 2002;123:1099-1108.   DOI   ScienceOn
109 Yu LC, Perdue MH. Role of mast cells in intestinal mucosal function: studies in models of hypersensitivity and stress. Immunol Rev 2001;179:61-73.   DOI   ScienceOn
110 Demaude J, Salvador-Cartier C, Fioramonti J, Ferrier L, Bueno L. Phenotypic changes in colonocytes following acute stress or activation of mast cells in mice: implications for delayed epithelial barrier dysfunction. Gut 2006;55:655-661.   DOI   ScienceOn
111 Bailey MT, Dowd SE, Galley JD, Hufnagle AR, Allen RG, Lyte M. Exposure to a social stressor alters the structure of the intestinal microbiota: Implications for stressor-induced immunomodulation. Brain Behav Immun 2011;25:397-407.   DOI   ScienceOn
112 Bailey MT, Dowd SE, Parry NM, Galley JD, Schauer DB, Lyte M. Stressor exposure disrupts commensal microbial populations in the intestines and leads to increased colonization by Citrobacter rodentium. Infect Immun 2010;78:1509-1519.   DOI   ScienceOn
113 O'Mahony SM, Marchesi JR, Scully P, et al. Early life stress alters behavior, immunity, and microbiota in rats: implications for irritable bowel syndrome and psychiatric illnesses. Biol Psychiatry 2009;65:263-267.
114 Cryan JF, O'Mahony SM. The microbiome-gut-brain axis: from bowel to behavior. Neurogastroenterol Motil 2011;23:187-192.   DOI   ScienceOn
115 Bercik P. The microbiota-gut-brain axis: learning from intestinal bacteria? Gut 2011;60:288-289.   DOI   ScienceOn
116 Heijtz RD, Wang S, Anuar F, et al. Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci U S A 2011;108:3047-3052.   DOI   ScienceOn
117 Chung EK, Bian ZX, Xu HX, Sung JJ. Neonatal maternal separation increases brain-derived neurotrophic factor and tyrosine kinase receptor B expression in the descending pain modulatory system. Neurosignals 2009;17:213-221.   DOI   ScienceOn
118 Rhee SH, Pothoulakis C, Mayer EA. Principles and clinical implications of the brain-gut-enteric microbiota axis. Nat Rev Gastroenterol Hepatol 2009;6:306-314.   DOI   ScienceOn
119 Collins SM, Bercik P. The relationship between intestinal microbiota and the central nervous system in normal gastrointestinal function and disease. Gastroenterology 2009;136:2003-2014.   DOI   ScienceOn
120 Chung EK, Zhang XJ, Xu HX, Sung JJ, Bian ZX. Visceral hyperalgesia induced by neonatal maternal separation is associated with nerve growth factor-mediated central neuronal plasticity in rat spinal cord. Neuroscience 2007;149:685-695.   DOI   ScienceOn
121 Matricon J, Gelot A, Etienne M, Lazdunski M, Muller E, Ardid D. Spinal cord plasticity and acid-sensing ion channels involvement in a rodent model of irritable bowel syndrome. Eur J Pain 2011;15:335-343.   DOI   ScienceOn
122 Gaudreau GA, Plourde V. Role of tachykinin NK1, NK2 and NK3 receptors in the modulation of visceral hypersensitivity in the rat. Neurosci Lett 2003;351:59-62.   DOI   ScienceOn
123 Bradesi S, Kokkotou E, Simeonidis S, et al. The role of neurokinin 1 receptors in the maintenance of visceral hyperalgesia induced by repeated stress in rats. Gastroenterology 2006;130:1729-1742.   DOI   ScienceOn
124 Bradesi S, Svensson CI, Steinauer J, Pothoulakis C, Yaksh TL, Mayer EA. Role of spinal microglia in visceral hyperalgesia and NK1R up-regulation in a rat model of chronic stress. Gastroenterology 2009;136:1339-1348, e1-e2   DOI   ScienceOn
125 Bradesi S. Role of spinal cord glia in the central processing of peripheral pain perception. Neurogastroenterol Motil 2010;22:499-511.   DOI   ScienceOn
126 Saab CY, Park YC, Al-Chaer ED. Thalamic modulation of visceral nociceptive processing in adult rats with neonatal colon irritation. Brain Res 2004;1008:186-192.   DOI   ScienceOn
127 Kim SH, Han JE, Hwang S, Oh DH. The expression of corticotropin-releasing factor in the central nucleus of the amygdala, induced by colorectal distension, is attenuated by general anesthesia. J Korean Med Sci 2010;25:1646-1651.   DOI   ScienceOn
128 Greenwood-Van Meerveld B, Gibson M, Gunter W, Shepard J, Foreman R, Myers D. Stereotaxic delivery of corticosterone to the amygdala modulates colonic sensitivity in rats. Brain Res 2001;893:135-142.   DOI   ScienceOn
129 Myers B, Dittmeyer K, Greenwood-Van MB. Involvement of amygdaloid corticosterone in altered visceral and somatic sensation. Behav Brain Res 2007;181:163-167.   DOI   ScienceOn
130 Myers B, Greenwood-Van Meerveld B. Corticosteroid receptor- mediated mechanisms in the amygdala regulate anxiety and colonic sensitivity. Am J Physiol Gastrointest Liver Physiol 2007;292:G1622-G1629.   DOI   ScienceOn
131 Nishii H, Nomura M, Aono H, Fujimoto N, Matsumoto T. Up-regulation of galanin and corticotropin-releasing hormone mRNAs in the key hypothalamic and amygdaloid nuclei in a mouse model of visceral pain. Regul Pept 2007;141:105-112.   DOI   ScienceOn
132 Kosoyan HP, Grigoriadis DE, Tache Y. The CRF(1) receptor antagonist, NBI-35965, abolished the activation of locus coeruleus neurons induced by colorectal distension and intracisternal CRF in rats. Brain Res 2005;1056:85-96.   DOI   ScienceOn
133 Curtis AL, Pavcovich LA, Grigoriadis DE, Valentino RJ. Previous stress alters corticotropin-releasing factor neurotransmission in the locus coeruleus. Neuroscience 1995;65:541-550.   DOI   ScienceOn
134 Lechner SM, Curtis AL, Brons R, Valentino RJ. Locus coeruleus activation by colon distention: role of corticotropin-releasing factor and excitatory amino acids. Brain Res 1997;756:114-124.   DOI   ScienceOn
135 Rouzade-Dominguez ML, Curtis AL, Valentino RJ. Role of Barrington's nucleus in the activation of rat locus coeruleus neurons by colonic distension. Brain Res 2001;917:206-218.   DOI   ScienceOn
136 Reyes BA, Glaser JD, Van Bockstaele EJ. Ultrastructural evidence for co-localization of corticotropin-releasing factor receptor and mu-opioid receptor in the rat nucleus locus coeruleus. Neurosci Lett 2007;413:216-221.   DOI   ScienceOn
137 Cheong E, Lee S, Choi BJ, Sun M, Lee CJ, Shin HS. Tuning thalamic firing modes via simultaneous modulation of T- and L-type $Ca^{2+}$ channels controls pain sensory gating in the thalamus. J Neurosci 2008;28:13331-13340.   DOI   ScienceOn
138 Reyes BA, Valentino RJ, Van Bockstaele EJ. Stress-induced intracellular trafficking of corticotropin-releasing factor receptors in rat locus coeruleus neurons. Endocrinology 2008;149:122-130.
139 Valentino RJ, Miselis RR, Pavcovich LA. Pontine regulation of pelvic viscera: pharmacological target for pelvic visceral dysfunctions. Trends Pharmacol Sci 1999;20:253-260.   DOI   ScienceOn
140 Kuner R. Central mechanisms of pathological pain. Nat Med 2010;16:1258-1266.   DOI   ScienceOn
141 Ren Y, Zhang L, Lu Y, Yang H, Westlund KN. Central lateral thalamic neurons receive noxious visceral mechanical and chemical input in rats. J Neurophysiol 2009;102:244-258.   DOI   ScienceOn
142 Zhuo M, Gebhart GF. Facilitation and attenuation of a visceral nociceptive reflex from the rostroventral medulla in the rat. Gastroenterology 2002;122:1007-1019.   DOI   ScienceOn
143 Sanoja R, Tortorici V, Fernandez C, Price TJ, Cervero F. Role of RVM neurons in capsaicin-evoked visceral nociception and referred hyperalgesia. Eur J Pain 2010;14:120.e1-e9.
144 Martenson ME, Cetas JS, Heinricher MM. A possible neural basis for stress-induced hyperalgesia. Pain 2009;142:236-244.   DOI   ScienceOn
145 Kearney DJ, Brown-Chang J. Complementary and alternative medicine for IBS in adults: mind-body interventions. Nat Clin Pract Gastroenterol Hepatol 2008;5:624-636.
146 Palsson OS, Drossman DA. Psychiatric and psychological dysfunction in irritable bowel syndrome and the role of psychological treatments. Gastroenterol Clin North Am 2005;34:281-303.   DOI   ScienceOn
147 Whorwell PJ. Behavioral therapy for IBS. Nat Clin Pract Gastroenterol Hepatol 2009;6:148-149.   DOI   ScienceOn
148 Blanchard EB, Lackner JM, Sanders K, et al. A controlled evaluation of group cognitive therapy in the treatment of irritable bowel syndrome. Behav Res Ther 2007;45:633-648.   DOI   ScienceOn
149 Verdu B, Decosterd I, Buclin T, Stiefel F, Berney A. Antidepressants for the treatment of chronic pain. Drugs 2008;68:2611-2632.   DOI   ScienceOn
150 Warnock JK, Clayton AH. Chronic episodic disorders in women. Psychiatr Clin North Am 2003;26:725-740.   DOI   ScienceOn
151 Larauche M, Mulak A, Tache Y. Stress and visceral pain: from animal models to clinical therapies. Exp Neurol Published Online First: 6 May 2011. doi:10.1016/j.expneurol.2011.04.020
152 Camilleri M, Andresen V. Current and novel therapeutic options for irritable bowel syndrome management. Dig Liver Dis 2009;41:854-862.   DOI   ScienceOn
153 Million M, Wang L, Adelson DW, Roman F, Diop L, Tache Y. Pregabalin decreases visceral pain and prevents spinal neuronal activation in rats. Gut 2007;56:1482-1484.   DOI   ScienceOn
154 Camilleri M. Review article: new receptor targets for medical therapy in irritable bowel syndrome. Aliment Pharmacol Ther 2010;31:35-46.   DOI   ScienceOn
155 Collins SM, Denou E, Verdu EF, Bercik P. The putative role of the intestinal microbiota in the irritable bowel syndrome. Dig Liver Dis 2009;41:850-853.   DOI   ScienceOn
156 Dukes GE, Mayer EA, Kelleher DL, Hicks KJ, Boardley RL, Alpers DH. A randomized, double blind, placebo (PLA) controlled, crossover study to evaluate the efficacy and safety of the corticotropin releasing factor 1 (CRF1) receptor antagonist (RA) GW876008 in irritable bowel syndrome (IBS) patients (Pts). Neurogastroenterol Motil 2009;21(suppl 1):84.
157 Klooker TK, Leliefeld KE, van den Wijngaard RM, Boeckxstaens GE. The cannabinoid receptor agonist delta-9-tetrahydrocannabinol does not affect visceral sensitivity to rectal distension in healthy volunteers and IBS patients. Neurogastroenterol Motil 2011;23:30-35, e2.   DOI   ScienceOn
158 Klooker TK, Kuiken SD, Lei A, Boeckxstaens GE. Effect of long-term treatment with octreotide on rectal sensitivity in patients with non-constipated irritable bowel syndrome. Aliment Pharmacol Ther 2007;26:605-615.   DOI   ScienceOn
159 Posserud I, Agerforz P, Ekman R, Bjornsson ES, Abrahamsson H, Simren M. Altered visceral perceptual and neuroendocrine response in patients with irritable bowel syndrome during mental stress. Gut 2004;53:1102-1108.   DOI   ScienceOn
160 Mayer EA, Bradesi S, Chang L, Spiegel BM, Bueller JA, Naliboff BD. Functional GI disorders: from animal models to drug development. Gut 2008;57:384-404.   DOI   ScienceOn
161 Elsenbruch S, Rosenberger C, Bingel U, Forsting M, Schedlowski M, Gizewski ER. Patients with irritable bowel syndrome have altered emotional modulation of neural responses to visceral stimuli. Gastroenterology 2010;139:1310-1319.   DOI   ScienceOn
162 Shen L, Kong H, Hou X. Prevalence of irritable bowel syndrome and its relationship with psychological stress status in Chinese university students. J Gastroenterol Hepatol 2009;24:1885-1890.   DOI   ScienceOn
163 Elsenbruch S, Rosenberger C, Enck P, Forsting M, Schedlowski M, Gizewski ER. Affective disturbances modulate the neural processing of visceral pain stimuli in irritable bowel syndrome: an fMRI study. Gut 2010;59:489-495.   DOI   ScienceOn
164 Lackner JM, Brasel AM, Quigley BM, et al. The ties that bind: perceived social support, stress, and IBS in severely affected patients. Neurogastroenterol Motil 2010;22:893-900.   DOI   ScienceOn
165 Choung RS, Locke GR 3rd, Zinsmeister AR, Schleck CD, Talley NJ. Psychosocial distress and somatic symptoms in community subjects with irritable bowel syndrome: a psychological component is the rule. Am J Gastroenterol 2009;104:1772-1779.   DOI   ScienceOn
166 Blanchard EB, Lackner JM, Jaccard J, et al. The role of stress in symptom exacerbation among IBS patients. J Psychosom Res 2008;64:119-128.   DOI   ScienceOn
167 Mayer EA, Naliboff BD, Chang L, Coutinho SV. V. Stress and irritable bowel syndrome. Am J Physiol Gastrointest Liver Physiol 2001;280:G519-G524.
168 Dufton LM, Konik B, Colletti R, et al. Effects of stress on pain threshold and tolerance in children with recurrent abdominal pain. Pain 2008;136:38-43.   DOI   ScienceOn
169 Chitkara DK, van Tilburg MA, Blois-Martin N, Whitehead WE. Early life risk factors that contribute to irritable bowel syndrome in adults: a systematic review. Am J Gastroenterol 2008;103:765-774.   DOI   ScienceOn
170 Videlock EJ, Adeyemo M, Licudine A, et al. Childhood trauma is associated with hypothalamic-pituitary-adrenal axis responsiveness in irritable bowel syndrome. Gastroenterology 2009;137:1954-1962.   DOI   ScienceOn
171 Leserman J, Drossman DA. Relationship of abuse history to functional gastrointestinal disorders and symptoms: some possible mediating mechanisms. Trauma Violence Abuse 2007;8:331-343.   DOI   ScienceOn
172 Gwee KA, Leong YL, Graham C, et al. The role of psychological and biological factors in postinfective gut dysfunction. Gut 1999;44:400-406.   DOI   ScienceOn
173 Qin HY, Wu JC, Tong XD, Sung JJ, Xu HX, Bian ZX. Systematic review of animal models of post-infectious/post-inflammatory irritable bowel syndrome. J Gastroenterol 2011;46:164-174.   DOI   ScienceOn
174 Spiller R, Garsed K. Infection, inflammation, and the irritable bowel syndrome. Dig Liver Dis 2009;41:844-849.   DOI   ScienceOn
175 Mulak A, Bonaz B. Irritable bowel syndrome: a model of the brain-gut interactions. Med Sci Monit 2004;10:RA55-RA62.
176 Barreau F, Ferrier L, Fioramonti J, Bueno L. New insights in the etiology and pathophysiology of irritable bowel syndrome: contribution of neonatal stress models. Pediatr Res 2007;62:240-245.   DOI   ScienceOn
177 Larauche M, Gourcerol G, Wang L, et al. Cortagine, a CRF1 agonist, induces stresslike alterations of colonic function and visceral hypersensitivity in rodents primarily through peripheral pathways. Am J Physiol Gastrointest Liver Physiol 2009;297:G215-G227.   DOI   ScienceOn
178 Yarushkina NI. The role of hypothalamo-hypophyseal-adrenocortical system hormones in controlling pain sensitivity. Neurosci Behav Physiol 2008;38:759-766.   DOI   ScienceOn
179 Coffin B, Bouhassira D, Sabate JM, Barbe L, Jian R. Alteration of the spinal modulation of nociceptive processing in patients with irritable bowel syndrome. Gut 2004;53:1465-1470.   DOI   ScienceOn
180 Naliboff BD, Mayer EA. Brain imaging in IBS: drawing the line between cognitive and non-cognitive processes. Gastroenterology 2006;130:267-270.   DOI   ScienceOn
181 Mayer EA, Naliboff BD, Craig AD. Neuroimaging of the brain-gut axis: from basic understanding to treatment of functional GI disorders. Gastroenterology 2006;131:1925-1942.   DOI   ScienceOn
182 Lanteri-Minet M, Isnardon P, de PJ, Menetrey D. Spinal and hindbrain structures involved in visceroception and visceronociception as revealed by the expression of Fos, Jun and Krox-24 proteins. Neuroscience 1993;55:737-753.   DOI   ScienceOn
183 Wang L, Martinez V, Larauche M, Tache Y. Proximal colon distension induces Fos expression in oxytocin-, vasopressin-, CRFand catecholamines-containing neurons in rat brain. Brain Res 2009;1247:79-91.
184 Stengel A, Tache Y. Corticotropin-releasing factor signaling and visceral response to stress. Exp Biol Med (Maywood) 2010;235:1168-1178.   DOI   ScienceOn
185 McEwen BS. Stress, adaptation, and disease. Allostasis and allostatic load. Ann N Y Acad Sci 1998;840:33-44.   DOI   ScienceOn
186 Sterling P, Eyer J. Allostasis: a new paradigm to explain arousal pathology. In: Fisher S, ed. Handbook of life stress, cognition and health. Oxford: John Wiley & Sons 1988:629-649.
187 McEwen BS, Stellar E. Stress and the individual. Mechanisms leading to disease. Arch Intern Med 1993;153:2093-2101.   DOI   ScienceOn
188 Hauger RL, Grigoriadis DE, Dallman MF, Plotsky PM, Vale WW, Dautzenberg FM. International Union of Pharmacology. XXXVI. Current status of the nomenclature for receptors for corticotropin-releasing factor and their ligands. Pharmacol Rev 2003;55:21-26.   DOI   ScienceOn
189 Zorrilla EP, Koob GF. Progress in corticotropin-releasing factor-1 antagonist development. Drug Discov Today 2010;15:371-383.   DOI   ScienceOn
190 Rivier CL, Grigoriadis DE, Rivier JE. Role of corticotropin- releasing factor receptors type 1 and 2 in modulating the rat adrenocorticotropin response to stressors. Endocrinology 2003;144:2396-2403.   DOI   ScienceOn
191 Koob GF, Heinrichs SC. A role for corticotropin releasing factor and urocortin in behavioral responses to stressors. Brain Res 1999;848:141-152.   DOI   ScienceOn
192 Bale TL, Vale WW. CRF and CRF receptors: role in stress responsivity and other behaviors. Annu Rev Pharmacol Toxicol 2004;44:525-557.   DOI   ScienceOn
193 Turnbull AV, Rivier C. Corticotropin-releasing factor (CRF) and endocrine responses to stress: CRF receptors, binding protein, and related peptides. Proc Soc Exp Biol Med 1997;215:1-10.
194 Tache Y, Martinez V, Million M, Wang L. Stress and the gastrointestinal tract III. Stress-related alterations of gut motor function: role of brain corticotropin-releasing factor receptors. Am J Physiol Gastrointest Liver Physiol 2001;280:G173-G177.
195 Million M, Maillot C, Adelson DA, et al. Peripheral injection of sauvagine prevents repeated colorectal distension-induced visceral pain in female rats. Peptides 2005;26:1188-1195.   DOI   ScienceOn
196 Holsboer F, Ising M. Central CRH system in depression and anxiety - evidence from clinical studies with CRH1 receptor antagonists. Eur J Pharmacol 2008;583:350-357.   DOI   ScienceOn
197 Fukudo S. Role of corticotropin-releasing hormone in irritable bowel syndrome and intestinal inflammation. J Gastroenterol 2007;42(suppl 17):48-51.
198 Tache Y, Brunnhuber S. From Hans Selye's discovery of biological stress to the identification of corticotropin-releasing factor signaling pathways: implication in stress-related functional bowel diseases. Ann N Y Acad Sci 2008;1148:29-41.   DOI   ScienceOn
199 Million M, Wang L, Wang Y, et al. CRF2 receptor activation prevents colorectal distension induced visceral pain and spinal ERK1/2 phosphorylation in rats. Gut 2006;55:172-181.   DOI   ScienceOn
200 Skorzewska A, Lehner M, Hamed A, et al. The effect of CRF2 receptor antagonists on rat conditioned fear responses and c-Fos and CRF expression in the brain limbic structures. Behav Brain Res 2011;221:155-165.   DOI   ScienceOn
201 Larauche M, Kiank C, Tache Y. Corticotropin releasing factor signaling in colon and ileum: regulation by stress and pathophysiological implications. J Physiol Pharmacol 2009;60(suppl 7):33-46.
202 Basbaum AI, Bautista DM, Scherrer G, Julius D. Cellular and molecular mechanisms of pain. Cell 2009;139:267-284.   DOI   ScienceOn
203 Sengupta JN. Visceral pain: the neurophysiological mechanism. Handb Exp Pharmacol 2009;194:31-74.
204 Robinson DR, Gebhart GF. Inside information: the unique features of visceral sensation. Mol Interv 2008;8:242-253.   DOI   ScienceOn
205 Grundy D. Neuroanatomy of visceral nociception: vagal and splanchnic afferent. Gut 2002;51(suppl 1):i2-i5.
206 Blackshaw LA, Brookes SJ, Grundy D, Schemann M. Sensory transmission in the gastrointestinal tract. Neurogastroenterol Motil 2007;19:1-19.
207 Coello C, Hjornevik T, Courivaud F, Willoch F. Anatomical standardization of small animal brain FDG-PET images using synthetic functional template: Experimental comparison with anatomical template. J Neurosci Methods 2011;199:166-172.   DOI   ScienceOn
208 Gibney SM, Gosselin RD, Dinan TG, Cryan JF. Colorectal distension-induced prefrontal cortex activation in the Wistar-Kyoto rat: implications for irritable bowel syndrome. Neuroscience 2010;165:675-683.   DOI   ScienceOn
209 Ait-Belgnaoui A, Eutamene H, Houdeau E, Bueno L, Fioramonti J, Theodorou V. Lactobacillus farciminis treatment attenuates stressinduced overexpression of Fos protein in spinal and supraspinal sites after colorectal distension in rats. Neurogastroenterol Motil 2009;21:567-569.   DOI   ScienceOn
210 Johnson AC, Myers B, Lazovic J, Towner R, Greenwood-Van Meerveld B. Brain activation in response to visceral stimulation in rats with amygdala implants of corticosterone: an FMRI study. PLoS One 2010;5:e8573.   DOI   ScienceOn
211 Sawchenko PE, Li HY, Ericsson A. Circuits and mechanisms governing hypothalamic responses to stress: a tale of two paradigms. Prog Brain Res 2000;122:61-78.
212 Herman JP, Cullinan WE. Neurocircuitry of stress: central control of the hypothalamo-pituitary-adrenocortical axis. Trends Neurosci 1997;20:78-84.   DOI   ScienceOn
213 Mayer EA, Collins SM. Evolving pathophysiologic models of functional gastrointestinal disorders. Gastroenterology 2002;122:2032-2048.   DOI   ScienceOn
214 Rosenberger C, Elsenbruch S, Scholle A, et al. Effects of psychological stress on the cerebral processing of visceral stimuli in healthy women. Neurogastroenterol Motil 2009;21:740-e45.   DOI   ScienceOn
215 Elsenbruch S. Abdominal pain in irritable bowel syndrome: a review of putative psychological, neural and neuro-immune mechanisms. Brain Behav Immun 2011;25:386-394.   DOI   ScienceOn
216 Bouin M, Plourde V, Boivin M, et al. Rectal distention testing in patients with irritable bowel syndrome: sensitivity, specificity, and predictive values of pain sensory thresholds. Gastroenterology 2002;122:1771-1777.   DOI   ScienceOn
217 Wang G, Tang B, Traub RJ. Differential processing of noxious colonic input by thoracolumbar and lumbosacral dorsal horn neurons in the rat. J Neurophysiol 2005;94:3788-3794.   DOI   ScienceOn
218 Ness TJ, Fillingim RB, Randich A, Backensto EM, Faught E. Low intensity vagal nerve stimulation lowers human thermal pain thresholds. Pain 2000;86:81-85.   DOI   ScienceOn
219 Randich A, Gebhart GF. Vagal afferent modulation of nociception. Brain Res Brain Res Rev 1992;17:77-99.   DOI   ScienceOn
220 Sugiura Y, Terui N, Hosoya Y, Tonosaki Y, Nishiyama K, Honda T. Quantitative analysis of central terminal projections of visceral and somatic unmyelinated (C) primary afferent fibers in the guinea pig. J Comp Neurol 1993;332:315-325.   DOI   ScienceOn
221 Price DD. Central neural mechanisms that interrelate sensory and affective dimensions of pain. Mol Interv 2002;2:392-403, 339.   DOI   ScienceOn
222 Heinricher MM, Tavares I, Leith JL, Lumb BM. Descending control of nociception: Specificity, recruitment and plasticity. Brain Res Rev 2009;60:214-225.   DOI   ScienceOn
223 Tsuruoka M, Wang D, Tamaki J, Inoue T. Descending influence from the nucleus locus coeruleus/subcoeruleus on visceral nociceptive transmission in the rat spinal cord. Neuroscience 2010;165:1019-1024.   DOI   ScienceOn
224 Zhuo M, Gebhart GF. Facilitation and attenuation of a visceral nociceptive reflex from the rostroventral medulla in the rat. Gastroenterology 2002;122:1007-1019.   DOI   ScienceOn
225 Ness TJ, Gebhart GF. Colorectal distension as a noxious visceral stimulus: physiologic and pharmacologic characterization of pseudoaffective reflexes in the rat. Brain Res 1988;450:153-169.   DOI   ScienceOn
226 Christianson JA, Gebhart GF. Assessment of colon sensitivity by luminal distension in mice. Nat Protoc 2007;2:2624-2631.   DOI   ScienceOn
227 Larsson M, Arvidsson S, Ekman C, Bayati A. A model for chronic quantitative studies of colorectal sensitivity using balloon distension in conscious mice-effects of opioid receptor agonists. Neurogastroenterol Motil 2003;15:371-381.   DOI   ScienceOn
228 Zucchelli M, Camilleri M, Nixon Andreasson A, et al. Association of TNFSF15 polymorphism with irritable bowel syndrome. Gut Published Online First: 2 June 2011. doi:10.1136/gut.2011.241877
229 Hotoleanu C, Popp R, Trifa AP, Nedelcu L, Dumitrascu DL. Genetic determination of irritable bowel syndrome. World J Gastroenterol 2008;14:6636-6640.   DOI   ScienceOn
230 Camilleri M. Genetics and irritable bowel syndrome: from genomics to intermediate phenotype and pharmacogenetics. Dig Dis Sci 2009;54:2318-2324.   DOI   ScienceOn
231 Markoutsaki T, Karantanos T, Gazouli M, Anagnou NP, Ladas SD, Karamanolis DG. Serotonin transporter and G protein beta 3 subunit gene polymorphisms in Greeks with irritable bowel syndrome. Dig Dis Sci Published Online First: 11 May 2011. doi:10.1007/s10620-011-1726-7
232 Vazquez-Roque MI, Camilleri M, Carlson P, et al. HLA-DQ genotype is associated with accelerated small bowel transit in patients with diarrhea-predominant irritable bowel syndrome. Eur J Gastroenterol Hepatol 2011;23:481-487.   DOI   ScienceOn
233 Dinan TG, Cryan J, Shanahan F, Keeling PW, Quigley EM. IBS: An epigenetic perspective. Nat Rev Gastroenterol Hepatol 2010;7:465-471.   DOI   ScienceOn
234 Wu HH, Wang S. Strain differences in the chronic mild stress animal model of depression. Behav Brain Res 2010;213:94-102.   DOI   ScienceOn
235 Porterfield VM, Zimomra ZR, Caldwell EA, Camp RM, Gabella KM, Johnson JD. Rat strain differences in restraint stress-induced brain cytokines. Neuroscience 2011;188:48-54.
236 O'Mahony CM, Clarke G, Gibney S, Dinan TG, Cryan JF. Strain differences in the neurochemical response to chronic restraint stress in the rat: relevance to depression. Pharmacol Biochem Behav 2011;97:690-699.   DOI   ScienceOn
237 Shepard JD, Myers DA. Strain differences in anxiety-like behavior: association with corticotropin-releasing factor. Behav Brain Res 2008;186:239-245.   DOI   ScienceOn
238 Gunter WD, Shepard JD, Foreman RD, Myers DA, Greenwood- Van Meerveld B. Evidence for visceral hypersensitivity in high-anxiety rats. Physiol Behav 2000;69:379-382.   DOI   ScienceOn
239 Enck P, Merlin V, Erckenbrecht JF, Wienbeck M. Stress effects on gastrointestinal transit in the rat. Gut 1989;30:455-459.   DOI   ScienceOn
240 Bonaz B, Tache Y. Water-avoidance stress-induced c-fos expression in the rat brain and stimulation of fecal output: role of corticotropin-releasing factor. Brain Res 1994;641:21-28.   DOI   ScienceOn
241 Eutamene H, Bradesi S, Larauche M, et al. Guanylate cyclase C-mediated antinociceptive effects of linaclotide in rodent models of visceral pain. Neurogastroenterol Motil 2010;22:312-e84.   DOI   ScienceOn
242 Schwetz I, Bradesi S, McRoberts JA, et al. Delayed stress-induced colonic hypersensitivity in male Wistar rats: role of neurokinin-1 and corticotropin-releasing factor-1 receptors. Am J Physiol Gastrointest Liver Physiol 2004;286:G683-G691.   DOI   ScienceOn
243 Gue M, Del Rio-Lacheze C, Eutamene H, Theodorou V, Fioramonti J, Bueno L. Stress-induced visceral hypersensitivity to rectal distension in rats: role of CRF and mast cells. Neurogastroenterol Motil 1997;9:271-279.   DOI   ScienceOn
244 Chang L. Review article: epidemiology and quality of life in functional gastrointestinal disorders. Aliment Pharmacol Ther 2004;20(suppl 7):31-39.
245 Bennett EJ, Tennant CC, Piesse C, Badcock CA, Kellow JE. Level of chronic life stress predicts clinical outcome in irritable bowel syndrome. Gut 1998;43:256-261.   DOI   ScienceOn
246 Hong S, Fan J, Kemmerer ES, Evans S, Li Y, Wiley JW. Reciprocal changes in vanilloid (TRPV1) and endocannabinoid (CB1) receptors contribute to visceral hyperalgesia in the water avoidance stressed rat. Gut 2009;58:202-210.   DOI   ScienceOn
247 Larauche M, Bradesi S, Million M, et al. Corticotropin-releasing factor type 1 receptors mediate the visceral hyperalgesia induced by repeated psychological stress in rats. Am J Physiol Gastrointest Liver Physiol 2008;294:G1033-G1040.   DOI   ScienceOn
248 Larauche M, Mulak A, Kim YS, Million M, Taché Y. Sex differences in visceral sensitivity induced by repeated psychological stress in rats: differential role of opioid pathway. Gut 2010;59:A104.
249 Yehuda R, Schmeidler J, Labinsky E, et al. Ten-year follow-up study of PTSD diagnosis, symptom severity and psychosocial indices in aging holocaust survivors. Acta Psychiatr Scand 2009;119:25-34.   DOI   ScienceOn
250 Klooker TK, Braak B, Painter RC, et al. Exposure to severe wartime conditions in early life is associated with an increased risk of irritable bowel syndrome: a population-based cohort study. Am J Gastroenterol 2009;104:2250-2256.   DOI   ScienceOn
251 Stam R, Akkermans LM, Wiegant VM. Trauma and the gut: interactions between stressful experience and intestinal function. Gut 1997;40:704-709.   DOI   ScienceOn
252 Stam R. PTSD and stress sensitisation: a tale of brain and body Part 2: animal models. Neurosci Biobehav Rev 2007;31:558-584.   DOI   ScienceOn
253 Wang W, Liu Y, Zheng H, et al. A modified single-prolonged stress model for post-traumatic stress disorder. Neurosci Lett 2008;441:237-241.   DOI   ScienceOn
254 Rau V, DeCola JP, Fanselow MS. Stress-induced enhancement of fear learning: an animal model of posttraumatic stress disorder. Neurosci Biobehav Rev 2005;29:1207-1223.   DOI   ScienceOn
255 Stam R, van Laar TJ, Akkermans LM, Wiegant VM. Variability factors in the expression of stress-induced behavioural sensitisation. Behav Brain Res 2002;132:69-76.   DOI   ScienceOn
256 Collins SM, Vallance B, Barbara G, Borgaonkar M. Putative inflammatory and immunological mechanisms in functional bowel disorders. Baillieres Best Pract Res Clin Gastroenterol 1999;13:429-436.   DOI   ScienceOn
257 Spiller RC. Postinfectious irritable bowel syndrome. Gastroenterology 2003;124:1662-1671.   DOI   ScienceOn
258 Spiller R, Garsed K. Postinfectious irritable bowel syndrome. Gastroenterology 2009;136:1979-1988.   DOI   ScienceOn
259 Long Y, Liu Y, Tong J, Qian W, Hou X. Effectiveness of trimebutine maleate on modulating intestinal hypercontractility in a mouse model of postinfectious irritable bowel syndrome. Eur J Pharmacol 2010;636:159-165.   DOI   ScienceOn
260 Gschossmann JM, Liebregts T, Adam B, et al. Long-term effects of transient chemically induced colitis on the visceromotor response to mechanical colorectal distension. Dig Dis Sci 2004;49:96-101.
261 Adam B, Liebregts T, Gschossmann JM, et al. Severity of mucosal inflammation as a predictor for alterations of visceral sensory function in a rat model. Pain 2006;123:179-186.   DOI   ScienceOn
262 Zhou Q, Price DD, Caudle RM, Verne GN. Visceral and somatic hypersensitivity in a subset of rats following TNBS-induced colitis. Pain 2008;134:9-15.   DOI   ScienceOn
263 Traub RJ, Tang B, Ji Y, Pandya S, Yfantis H, Sun Y. A rat model of chronic postinflammatory visceral pain induced by deoxycholic acid. Gastroenterology 2008;135:2075-2083.   DOI   ScienceOn
264 Verma-Gandhu M, Verdu EF, Bercik P, et al. Visceral pain perception is determined by the duration of colitis and associated neuropeptide expression in the mouse. Gut 2007;56:358-364.   DOI   ScienceOn
265 Larsson MH, Rapp L, Lindstrom E. Effect of DSS-induced colitis on visceral sensitivity to colorectal distension in mice. Neurogastroenterol Motil 2006;18:144-152.   DOI   ScienceOn
266 Wlodarska M, Willing B, Keeney KM, et al. Antibiotic treatment alters the colonic mucus layer and predisposes the host to exacerbated Citrobacter rodentium-induced colitis. Infect Immun 2011;79:1536-1545.   DOI   ScienceOn
267 Mendall MA, Kumar D. Antibiotic use, childhood affluence and irritable bowel syndrome (IBS). Eur J Gastroenterol Hepatol 1998;10:59-62.   DOI   ScienceOn
268 Verdu EF, Bercik P, Verma-Gandhu M, et al. Specific probiotic therapy attenuates antibiotic induced visceral hypersensitivity in mice. Gut 2006;55:182-190.   DOI   ScienceOn
269 Pimentel M, Chatterjee S, Chow EJ, Park S, Kong Y. Neomycin improves constipation-predominant irritable bowel syndrome in a fashion that is dependent on the presence of methane gas: subanalysis of a double-blind randomized controlled study. Dig Dis Sci 2006;51:1297-1301.   DOI   ScienceOn
270 Pimentel M, Lembo A, Chey WD, et al. Rifaximin therapy for patients with irritable bowel syndrome without constipation. N Engl J Med 2011;364:22-32.   DOI   ScienceOn
271 Li S, Yu Y, Prakash R. Possible pathogenetic roles of abdominal surgery in irritable bowel syndrome. Med Hypotheses 2011;76:497-499.   DOI   ScienceOn
272 Pimentel M, Morales W, Chua K, et al. Effects of Rifaximin Treatment and Retreatment in Nonconstipated IBS Subjects. Dig Dis Sci 2011;56:2067-2072.   DOI   ScienceOn
273 Salonen A, de Vos WM, Palva A. Gastrointestinal microbiota in irritable bowel syndrome: present state and perspectives. Microbiology 2010;156(Pt 11):3205-3215.
274 Minocha A, Johnson WD, Wigington WC. Prevalence of abdominal and pelvic surgeries in patients with irritable bowel syndrome: comparison between Caucasian and African Americans. Am J Med Sci 2008;335:82-88.   DOI   ScienceOn
275 Miranda A, Peles S, Rudolph C, Shaker R, Sengupta JN. Altered visceral sensation in response to somatic pain in the rat. Gastroenterology 2004;126:1082-1089.   DOI   ScienceOn
276 Cameron DM, Brennan TJ, Gebhart GF. Hind paw incision in the rat produces long-lasting colon hypersensitivity. J Pain 2008;9:246-253.   DOI   ScienceOn
277 Whitehead WE, Palsson O, Jones KR. Systematic review of the comorbidity of irritable bowel syndrome with other disorders: what are the causes and implications? Gastroenterology 2002;122:1140-1156.   DOI   ScienceOn
278 Pang X, Boucher W, Triadafilopoulos G, Sant GR, Theoharides TC. Mast cell and substance P-positive nerve involvement in a patient with both irritable bowel syndrome and interstitial cystitis. Urology 1996;47:436-438.   DOI   ScienceOn
279 Peters KM, Killinger KA, Ibrahim IA. Childhood symptoms and events in women with interstitial cystitis/painful bladder syndrome. Urology 2009;73:258-262.   DOI   ScienceOn
280 Pezzone MA, Liang R, Fraser MO. A model of neural cross-talk and irritation in the pelvis: implications for the overlap of chronic pelvic pain disorders. Gastroenterology 2005;128:1953-1964.   DOI   ScienceOn
281 Miranda A, Mickle A, Schmidt J, et al. Neonatal cystitis-induced colonic hypersensitivity in adult rats: a model of viscero-visceral convergence. Neurogastroenterol Motil 2011;23:683-e281.   DOI   ScienceOn
282 Svensson CI, Hua XY, Protter AA, Powell HC, Yaksh TL. Spinal p38 MAP kinase is necessary for NMDA-induced spinal PGE(2) release and thermal hyperalgesia. Neuroreport 2003;14:1153-1157.   DOI   ScienceOn
283 Bradesi S, Svensson CI, Steinauer J, Pothoulakis C, Yaksh TL, Mayer EA. Role of spinal microglia activation in visceral hyperalgesia following chronic psychological stress in Wistar rats. Gastroenterology 2009;136:1339-1348.   DOI   ScienceOn
284 Liaw WJ, Stephens RL Jr, Binns BC, et al. Spinal glutamate uptake is critical for maintaining normal sensory transmission in rat spinal cord. Pain 2005;115:60-70.   DOI   ScienceOn
285 Lin Y, Tian G, Roman K, et al. Increased glial glutamate transporter EAAT2 expression reduces visceral nociceptive response in mice. Am J Physiol Gastrointest Liver Physiol 2009;296:G129-G134.
286 Gosselin RD, O'Connor RM, Tramullas M, Julio-Pieper M, Dinan TG, Cryan JF. Riluzole normalizes early-life stress-induced visceral hypersensitivity in rats: role of spinal glutamate reuptake mechanisms. Gastroenterology 2010;138:2418-2425.   DOI   ScienceOn
287 Tjong YW, Ip SP, Lao L, et al. Neonatal maternal separation elevates thalamic corticotrophin releasing factor type 1 receptor expression response to colonic distension in rat. Neuro Endocrinol Lett 2010;31:215-220.
288 Tillisch K, Mayer EA, Labus JS. Quantitative meta-analysis identifies brain regions activated during rectal distension in irritable bowel syndrome. Gastroenterology 2011;140:91-100.   DOI   ScienceOn
289 Zhang R, Zou N, Li J, et al. Elevated expression of c-fos in central nervous system correlates with visceral hypersensitivity in irritable bowel syndrome (IBS): a new target for IBS treatment. Int J Colorectal Dis Published Online First: 22 Feb 2011. doi:10.1016/j.expneurol.2011.04.020
290 Chang L. Brain responses to visceral and somatic stimuli in irritable bowel syndrome: a central nervous system disorder? Gastroenterol Clin North Am 2005;34:271-279.   DOI   ScienceOn
291 Dayas CV, Buller KM, Crane JW, Xu Y, Day TA. Stressor categorization: acute physical and psychological stressors elicit distinctive recruitment patterns in the amygdala and in medullary noradrenergic cell groups. Eur J Neurosci 2001;14:1143-1152.   DOI   ScienceOn
292 Piche M, Arsenault M, Poitras P, Rainville P, Bouin M. Widespread hypersensitivity is related to altered pain inhibition processes in irritable bowel syndrome. Pain 2010;148:49-58.   DOI   ScienceOn
293 Schwetz I, McRoberts JA, Coutinho SV, et al. Corticotropin-releasing factor receptor 1 mediates acute and delayed stress-induced visceral hyperalgesia in maternally separated Long-Evans rats. Am J Physiol Gastrointest Liver Physiol 2005;289:G704-G712.
294 Rivat C, Laboureyras E, Laulin JP, Le RC, Richebe P, Simonnet G. Non-nociceptive environmental stress induces hyperalgesia, not analgesia, in pain and opioid-experienced rats. Neuropsychopharmacology 2007;32:2217-2228.   DOI   ScienceOn
295 Berman SM, Naliboff BD, Suyenobu B, et al. Reduced brainstem inhibition during anticipated pelvic visceral pain correlates with enhanced brain response to the visceral stimulus in women with irritable bowel syndrome. J Neurosci 2008;28:349-359.   DOI   ScienceOn
296 Song GH, Venkatraman V, Ho KY, Chee MW, Yeoh KG, Wilder-Smith CH. Cortical effects of anticipation and endogenous modulation of visceral pain assessed by functional brain MRI in irritable bowel syndrome patients and healthy controls. Pain 2006;126:79-90.   DOI   ScienceOn
297 Wilder-Smith CH, Schindler D, Lovblad K, Redmond SM, Nirkko A. Brain functional magnetic resonance imaging of rectal pain and activation of endogenous inhibitory mechanisms in irritable bowel syndrome patient subgroups and healthy controls. Gut 2004;53:1595-1601.   DOI   ScienceOn
298 Heitkemper MM, Chang L. Do fluctuations in ovarian hormones affect gastrointestinal symptoms in women with irritable bowel syndrome? Gend Med 2009;6(suppl 2):152-167.
299 Adeyemo MA, Spiegel BM, Chang L. Meta-analysis: do irritable bowel syndrome symptoms vary between men and women? Aliment Pharmacol Ther 2010;32:738-755.   DOI   ScienceOn
300 Fillingim RB, King CD, Ribeiro-Dasilva MC, Rahim-Williams B, Riley JL 3rd. Sex, gender, and pain: a review of recent clinical and experimental findings. J Pain 2009;10:447-485.
301 Mulak A, Tache Y. Sex difference in irritable bowel syndrome: do gonadal hormones play a role? Gastroenterol Pol 2010;17:89-97.
302 Barreau F, Cartier C, Leveque M, et al. Pathways involved in gut mucosal barrier dysfunction induced in adult rats by maternal deprivation: corticotrophin-releasing factor and nerve growth factor interplay. J Physiol 2007;580(Pt 1):347-356.
303 Sagami Y, Shimada Y, Tayama J, et al. Effect of a corticotropin releasing hormone receptor antagonist on colonic sensory and motor function in patients with irritable bowel syndrome. Gut 2004;53:958-964.   DOI   ScienceOn
304 Tayama J, Sagami Y, Shimada Y, Hongo M, Fukudo S. Effect of alpha-helical CRH on quantitative electroencephalogram in patients with irritable bowel syndrome. Neurogastroenterol Motil 2007;19:471-483.   DOI   ScienceOn
305 La JH, Sung TS, Kim HJ, Kim TW, Kang TM, Yang IS. Peripheral corticotropin releasing hormone mediates post-inflammatory visceral hypersensitivity in rats. World J Gastroenterol 2008;14:731-736.   DOI   ScienceOn
306 Wallon C, Yang PC, Keita AV, et al. Corticotropin-releasing hormone (CRH) regulates macromolecular permeability via mast cells in normal human colonic biopsies in vitro. Gut 2008;57:50-58.
307 Barbara G, Wang B, Stanghellini V, et al. Mast cell-dependent excitation of visceral-nociceptive sensory neurons in irritable bowel syndrome. Gastroenterology 2007;132:26-37.   DOI   ScienceOn
308 Van den Wijngaard RM, Klooker TK, de Jonge WJ, Boeckxstaens GE. Peripheral relays in stress-induced activation of visceral afferents in the gut. Auton Neurosci 2010;153:99-105.   DOI   ScienceOn
309 Cenac N, Andrews CN, Holzhausen M, et al. Role for protease activity in visceral pain in irritable bowel syndrome. J Clin Invest 2007;117:636-647.   DOI   ScienceOn
310 Gold MS, Zhang L, Wrigley DL, Traub RJ. Prostaglandin E(2) modulates TTX-R I(Na) in rat colonic sensory neurons. J Neurophysiol 2002;88:1512-1522.
311 Van den Wijngaard RM, Kooker TK, Welting O, et al. Essential role for TRPV1 in stress-induced (mast cell-dependent) colonic hypersensitivity in maternally separated rats. Neurogastroenterol Motil 2009;21:1107-e94.   DOI   ScienceOn
312 Bailey JE, Papadopoulos A, Diaper A, et al. Preliminary evidence of anxiolytic effects of the CRF1 receptor antagonist R317573 in the 7.5% $CO_2$ proof-of-concept experimental model of human anxiety. J Psychopharmacol Published Online First: 9 May 2011. doi:10.1177/0269881111400650