Browse > Article
http://dx.doi.org/10.3345/kjp.2014.57.11.472

Vascular health late after Kawasaki disease: implications for accelerated atherosclerosis  

Cheung, Yiu-Fai (Division of Paediatric Cardiology, Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, The University of Hong Kong)
Publication Information
Clinical and Experimental Pediatrics / v.57, no.11, 2014 , pp. 472-478 More about this Journal
Abstract
Kawasaki disease (KD), an acute vasculitis that primarily affects young children, is the most common acquired paediatric cardiovascular disease in developed countries. While sequelae of arterial inflammation in the acute phase of KD are well documented, its late effects on vascular health are increasingly unveiled. Late vascular dysfunction is characterized by structural alterations and functional impairment in term of arterial stiffening and endothelial dysfunction and shown to involve both coronary and systemic arteries. Further evidence suggests that continuous low grade inflammation and ongoing active remodeling of coronary arterial lesions occur late after acute illness and may play a role in structural and functional alterations of the arteries. Potential importance of genetic modulation on vascular health late after KD is implicated by associations between mannose binding lectin and inflammatory gene polymorphisms with severity of peripheral arterial stiffening and carotid intima-media thickening. The changes in cholesterol and lipoproteins levels late after KD further appear similar to those proposed to be atherogenic. While data on adverse vascular health are less controversial in patients with persistent or regressed coronary arterial aneurysms, data appear conflicting in individuals with no coronary arterial involvements or only transient coronary ectasia. Notwithstanding, concerns have been raised with regard to predisposition of KD in childhood to accelerated atherosclerosis in adulthood. Until further evidence-based data are available, however, it remains important to assess and monitor cardiovascular risk factors and to promote cardiovascular health in children with a history of KD in the long term.
Keywords
Kawasaki disease; Blood vessels; Atherosclerosis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kato H, Sugimura T, Akagi T, Sato N, Hashino K, Maeno Y, et al. Long-term consequences of Kawasaki disease: a 10- to 21-year follow-up study of 594 patients. Circulation 1996;94:1379-85.
2 Burns JC, Glode MP. Kawasaki syndrome. Lancet 2004;364:533-44.
3 Chen S, Lee Y, Crother TR, Fishbein M, Zhang W, Yilmaz A, et al. Marked acceleration of atherosclerosis after Lactobacillus casei-induced coronary arteritis in a mouse model of Kawasaki disease. Arterioscler Thromb Vasc Biol 2012;32:e60-71.
4 Tsuda E, Abe T, Tamaki W. Acute coronary syndrome in adult patients with coronary artery lesions caused by Kawasaki disease: review of case reports. Cardiol Young 2011;21:74-82.
5 Sugimura T, Kato H, Inoue O, Fukuda T, Sato N, Ishii M, et al. Intravascular ultrasound of coronary arteries in children: assessment of the wall morphology and the lumen after Kawasaki disease. Circulation 1994;89:258-65.
6 Suzuki A, Yamagishi M, Kimura K, Sugiyama H, Arakaki Y, Kamiya T, et al. Functional behavior and morphology of the coronary artery wall in patients with Kawasaki disease assessed by intravascular ultrasound. J Am Coll Cardiol 1996;27:291-6.
7 Mitani Y, Ohashi H, Sawada H, Ikeyama Y, Hayakawa H, Takabayashi S, et al. In vivo plaque composition and morphology in coronary artery lesions in adolescents and young adults long after Kawasaki disease: a virtual histology-intravascular ultrasound study. Circulation 2009;119:2829-36.
8 Takahashi K, Oharaseki T, Naoe S. Pathological study of postcoronary arteritis in adolescents and young adults: with reference to the relationship between sequelae of Kawasaki disease and atherosclerosis. Pediatr Cardiol 2001;22:138-42.
9 Tomita H, Fuse S, Chiba S. Images in cardiology: delayed appearance of coronary aneurysms in Kawasaki disease. Heart 1998;80:425.
10 Yasukawa K, Sonobe T, Yamamoto W. The evolution of newly developed coronary aneurysm in the chronic stage of Kawasaki disease and the usefulness of MRCA. Prog Med 2003;23:1778-83.
11 Kobayashi T, Sone K, Shinohara M, Kosuda T, Kobayashi T. Images in cardiovascular medicine. Giant coronary aneurysm of Kawasaki disease developing during postacute phase. Circulation 1998;98:92-3.
12 Tsuda E, Kamiya T, Ono Y, Kimura K, Echigo S. Dilated coronary arterial lesions in the late period after Kawasaki disease. Heart 2005;91:177-82.
13 O'Rourke RA, Brundage BH, Froelicher VF, Greenland P, Grundy SM, Hachamovitch R, et al. American College of Cardiology/American Heart Association Expert Consensus document on electron-beam computed tomography for the diagnosis and prognosis of coronary artery disease. Circulation 2000;102:126-40.
14 Ishii M, Ueno T, Ikeda H, Iemura M, Sugimura T, Furui J, et al. Sequential follow-up results of catheter intervention for coronary artery lesions after Kawasaki disease: quantitative coronary artery angiography and intravascular ultrasound imaging study. Circulation 2002;105:3004-10.
15 Dadlani GH, Gingell RL, Orie JD, Roland JM, Najdzionek J, Lipsitz SR, et al. Coronary artery calcifications in the long-term follow-up of Kawasaki disease. Am Heart J 2005;150:1016.
16 Kanamaru H, Sato Y, Takayama T, Ayusawa M, Karasawa K, Sumitomo N, et al. Assessment of coronary artery abnormalities by multislice spiral computed tomography in adolescents and young adults with Kawasaki disease. Am J Cardiol 2005;95:522-5.
17 Sugimura T, Kato H, Inoue O, Takagi J, Fukuda T, Sato N. Vasodilatory response of the coronary arteries after Kawasaki disease: evaluation by intracoronary injection of isosorbide dinitrate. J Pediatr 1992;121(5 Pt 1):684-8.
18 Iemura M, Ishii M, Sugimura T, Akagi T, Kato H. Long term consequences of regressed coronary aneurysms after Kawasaki disease: vascular wall morphology and function. Heart 2000;83:307-11.
19 Ludmer PL, Selwyn AP, Shook TL, Wayne RR, Mudge GH, Alexander RW, et al. Paradoxical vasoconstriction induced by acetylcholine in atherosclerotic coronary arteries. N Engl J Med 1986;315:1046-51.
20 Mitani Y, Okuda Y, Shimpo H, Uchida F, Hamanaka K, Aoki K, et al. Impaired endothelial function in epicardial coronary arteries after Kawasaki disease. Circulation 1997;96:454-61.
21 Yamakawa R, Ishii M, Sugimura T, Akagi T, Eto G, Iemura M, et al. Coronary endothelial dysfunction after Kawasaki disease: evaluation by intracoronary injection of acetylcholine. J Am Coll Cardiol 1998;31:1074-80.
22 Fujiwara T, Fujiwara H, Nakano H. Pathological features of coronary arteries in children with Kawasaki disease in which coronary arterial aneurysm was absent at autopsy. Quantitative analysis. Circulation 1988;78:345-50.
23 Muzik O, Paridon SM, Singh TP, Morrow WR, Dayanikli F, Di Carli MF. Quantification of myocardial blood flow and flow reserve in children with a history of Kawasaki disease and normal coronary arteries using positron emission tomography. J Am Coll Cardiol 1996;28:757-62.
24 Ohmochi Y, Onouchi Z, Oda Y, Hamaoka K. Assessment of effects of intravenous dipyridamole on regional myocardial perfusion in children with Kawasaki disease without angiographic evidence of coronary stenosis using positron emission tomography and H2(15)O. Coron Artery Dis 1995;6:555-9.
25 Furuyama H, Odagawa Y, Katoh C, Iwado Y, Yoshinaga K, Ito Y, et al. Assessment of coronary function in children with a history of Kawasaki disease using (15)O-water positron emission tomography. Circulation 2002;105:2878-84.
26 Yu W, Wong SJ, Cheung YF. Left ventricular mechanics in adolescents and young adults with a history of Kawasaki disease: analysis by three-dimensional speckle tracking echocardiography. Echocardiography 2014;31:483-91.
27 Greenland P, Abrams J, Aurigemma GP, Bond MG, Clark LT, Criqui MH, et al. Prevention Conference V: Beyond secondary prevention: identifying the high-risk patient for primary prevention: noninvasive tests of atherosclerotic burden: Writing Group III. Circulation 2000;101:E16-22.
28 Noto N, Okada T, Yamasuge M, Taniguchi K, Karasawa K, Ayusawa M, et al. Noninvasive assessment of the early progression of atherosclerosis in adolescents with Kawasaki disease and coronary artery lesions. Pediatrics 2001;107:1095-9.
29 Ikemoto Y, Ogino H, Teraguchi M, Kobayashi Y. Evaluation of preclinical atherosclerosis by flow-mediated dilatation of the brachial artery and carotid artery analysis in patients with a history of Kawasaki disease. Pediatr Cardiol 2005;26:782-6.
30 Kadono T, Sugiyama H, Hoshiai M, Osada M, Tan T, Naitoh A, et al. Endothelial function evaluated by flow-mediated dilatation in pediatric vascular disease. Pediatr Cardiol 2005;26:385-90.
31 Cheung YF, Wong SJ, Ho MH. Relationship between carotid intima-media thickness and arterial stiffness in children after Kawasaki disease. Arch Dis Child 2007;92:43-7.
32 Noto N, Okada T, Abe Y, Miyashita M, Kanamaru H, Karasawa K, et al. Characteristics of earlier atherosclerotic involvement in adolescent patients with Kawasaki disease and coronary artery lesions: significance of gray scale median on B-mode ultrasound. Atherosclerosis 2012;222:106-9.
33 Dalla Pozza R, Bechtold S, Urschel S, Kozlik-Feldmann R, Netz H. Subclinical atherosclerosis, but normal autonomic function after Kawasaki disease. J Pediatr 2007;151:239-43.
34 Selamet Tierney ES, Gal D, Gauvreau K, Baker AL, Trevey S, O'Neill SR, et al. Vascular health in Kawasaki disease. J Am Coll Cardiol 2013;62:1114-21.
35 Orenstein JM, Shulman ST, Fox LM, Baker SC, Takahashi M, Bhatti TR, et al. Three linked vasculopathic processes characterize Kawasaki disease: a light and transmission electron microscopic study. PLoS One 2012;7:e38998.
36 Celermajer DS, Sorensen KE, Gooch VM, Spiegelhalter DJ, Miller OI, Sullivan ID, et al. Non-invasive detection of endothelial dysfunction in children and adults at risk of atherosclerosis. Lancet 1992;340:1111-5.
37 Dhillon R, Clarkson P, Donald AE, Powe AJ, Nash M, Novelli V, et al. Endothelial dysfunction late after Kawasaki disease. Circulation 1996;94:2103-6.
38 Niboshi A, Hamaoka K, Sakata K, Yamaguchi N. Endothelial dysfunction in adult patients with a history of Kawasaki disease. Eur J Pediatr 2008;167:189-96.
39 Silva AA, Maeno Y, Hashmi A, Smallhorn JF, Silverman ED, McCrindle BW. Cardiovascular risk factors after Kawasaki disease: a case-control study. J Pediatr 2001;138:400-5. 42 . McCrindle BW, McIntyre S, Kim C, Lin T, Adeli K. Are patients after Kawasaki disease at increased risk for accelerated atherosclerosis? J Pediatr 2007;151:244-8, 248.e1.
40 Hirose S, Hamashima Y. Morphological observations on the vasculitis in the mucocutaneous lymph node syndrome: a skin biopsy study of 27 patients. Eur J Pediatr 1978;129:17-27.
41 Fujiwara H, Hamashima Y. Pathology of the heart in Kawasaki disease. Pediatrics 1978;61:100-7.
42 Cheung YF, Ho MH, Tam SC, Yung TC. Increased high sensitivity C reactive protein concentrations and increased arterial stiffness in children with a history of Kawasaki disease. Heart 2004;90:1281-5.
43 Ooyanagi R, Fuse S, Tomita H, Takamuro M, Horita N, Mori M, et al. Pulse wave velocity and ankle brachial index in patients with Kawasaki disease. Pediatr Int 2004;46:398-402.
44 Cheung YF, Yung TC, Tam SC, Ho MH, Chau AK. Novel and traditional cardiovascular risk factors in children after Kawasaki disease: implications for premature atherosclerosis. J Am Coll Cardiol 2004;43:120-4.
45 Vaujois L, Dallaire F, Maurice RL, Fournier A, Houde C, Therien J, et al. The biophysical properties of the aorta are altered following Kawasaki disease. J Am Soc Echocardiogr 2013;26:1388-96.
46 AlHuzaimi A, Al Mashham Y, Potts JE, De Souza AM, Sandor GG. Echo-Doppler assessment of arterial stiffness in pediatric patients with Kawasaki disease. J Am Soc Echocardiogr 2013;26:1084-9.
47 Senzaki H, Chen CH, Ishido H, Masutani S, Matsunaga T, Taketazu M, et al. Arterial hemodynamics in patients after Kawasaki disease. Circulation 2005;111:2119-25.
48 Amano S, Hazama F, Hamashima Y. Pathology of Kawasaki disease: I. Pathology and morphogenesis of the vascular changes. Jpn Circ J 1979;43:633-43.
49 Amano S, Hazama F, Hamashima Y. Pathology of Kawasaki disease: II. Distribution and incidence of the vascular lesions. Jpn Circ J 1979;43:741-8.
50 Masuda H, Shozawa T, Naoe S, Tanaka N. The intercostal artery in Kawasaki disease: a pathologic study of 17 autopsy cases. Arch Pathol Lab Med 1986;110:1136-42.
51 Tanaka N, Naoe S, Masuda H, Ueno T. Pathological study of sequelae of Kawasaki disease (MCLS). With special reference to the heart and coronary arterial lesions. Acta Pathol Jpn 1986;36:1513-27.
52 Foster BJ, Bernard C, Drummond KN. Kawasaki disease complicated by renal artery stenosis. Arch Dis Child 2000;83:253-5.
53 Ramsey MW, Goodfellow J, Jones CJ, Luddington LA, Lewis MJ, Henderson AH. Endothelial control of arterial distensibility is impaired in chronic heart failure. Circulation 1995;92:3212-9.
54 Cheung YF, Ho MH, Ip WK, Fok SF, Yung TC, Lau YL. Modulating effects of mannose binding lectin genotype on arterial stiffness in children after Kawasaki disease. Pediatr Res 2004;56:591-6.
55 Joannides R, Richard V, Haefeli WE, Benoist A, Linder L, Luscher TF, et al. Role of nitric oxide in the regulation of the mechanical properties of peripheral conduit arteries in humans. Hypertension 1997;30:1465-70.
56 Demer LL. Effect of calcification on in vivo mechanical response of rabbit arteries to balloon dilation. Circulation 1991;83:2083-93.
57 Biezeveld MH, Kuipers IM, Geissler J, Lam J, Ottenkamp JJ, Hack CE, et al. Association of mannose-binding lectin genotype with cardiovascular abnormalities in Kawasaki disease. Lancet 2003;361:1268-70.
58 Cheung YF, Huang GY, Chen SB, Liu XQ, Xi L, Liang XC, et al. Inflammatory gene polymorphisms and susceptibility to kawasaki disease and its arterial sequelae. Pediatrics 2008;122:e608-14.
59 Takahashi M. The endothelium in Kawasaki disease: the next frontier. J Pediatr 1998;133:177-9.
60 McConnell ME, Hannon DW, Steed RD, Gilliland MG. Fatal obliterative coronary vasculitis in Kawasaki disease. J Pediatr 1998;133:259-61.
61 Burke AP, Virmani R, Perry LW, Li L, King TM, Smialek J. Fatal Kawasaki disease with coronary arteritis and no coronary aneurysms. Pediatrics 1998;101(1 Pt 1):108-12.
62 Mitani Y, Sawada H, Hayakawa H, Aoki K, Ohashi H, Matsumura M, et al. Elevated levels of high-sensitivity C-reactive protein and serum amyloid-A late after Kawasaki disease: association between inflammation and late coronary sequelae in Kawasaki disease. Circulation 2005;111:38-43.
63 Suda K, Tahara N, Kudo Y, Yoshimoto H, Iemura M, Ueno T, et al. Persistent coronary arterial inflammation in a patient long after the onset of Kawasaki disease. Int J Cardiol 2012;154:193-4.
64 Ross R. Atherosclerosis: an inflammatory disease. N Engl J Med 1999;340:115-26.
65 Fukazawa R, Ikegam E, Watanabe M, Hajikano M, Kamisago M, Katsube Y, et al. Coronary artery aneurysm induced by Kawasaki disease in children show features typical senescence. Circ J 2007;71:709-15.
66 Charo IF, Myers SJ, Herman A, Franci C, Connolly AJ, Coughlin SR. Molecular cloning and functional expression of two monocyte chemoattractant protein 1 receptors reveals alternative splicing of the carboxyl-terminal tails. Proc Natl Acad Sci U S A 1994; 91:2752-6.
67 Cheung YF, Karmin O, Tam SC, Siow YL. Induction of MCP1, CCR2, and iNOS expression in THP-1 macrophages by serum of children late after Kawasaki disease. Pediatr Res 2005;58:1306-10.
68 Han KH, Hong KH, Park JH, Ko J, Kang DH, Choi KJ, et al. C-reactive protein promotes monocyte chemoattractant protein-1-mediated chemotaxis through upregulating CC chemokine receptor 2 expression in human monocytes. Circulation 2004;109:2566-71.
69 Suzuki A, Miyagawa-Tomita S, Komatsu K, Nishikawa T, Sakomura Y, Horie T, et al. Active remodeling of the coronary arterial lesions in the late phase of Kawasaki disease: immunohistochemical study. Circulation 2000;101:2935-41.
70 Suzuki A, Miyagawa-Tomita S, Komatsu K, Nakazawa M, Fukaya T, Baba K, et al. Immunohistochemical study of apparently intact coronary artery in a child after Kawasaki disease. Pediatr Int 2004;46:590-6.
71 Newburger JW, Burns JC, Beiser AS, Loscalzo J. Altered lipid profile after Kawasaki syndrome. Circulation 1991;84:625-31.
72 Cabana VG, Gidding SS, Getz GS, Chapman J, Shulman ST. Serum amyloid A and high density lipoprotein participate in the acute phase response of Kawasaki disease. Pediatr Res 1997;42:651-5.
73 Salo E, Pesonen E, Viikari J. Serum cholesterol levels during and after Kawasaki disease. J Pediatr 1991;119:557-61.
74 Khovidhunkit W, Memon RA, Feingold KR, Grunfeld C. Infection and inflammation-induced proatherogenic changes of lipoproteins. J Infect Dis 2000;181 Suppl 3:S462-72.
75 Koren G, Lavi S, Rose V, Rowe R. Kawasaki disease: review of risk factors for coronary aneurysms. J Pediatr 1986;108:388-92.
76 Nakamura Y, Aso E, Yashiro M, Tsuboi S, Kojo T, Aoyama Y, et al. Mortality among Japanese with a history of Kawasaki disease: results at the end of 2009. J Epidemiol 2013;23:429-34.
77 Goldberg IJ, Blaner WS, Vanni TM, Moukides M, Ramakrishnan R. Role of lipoprotein lipase in the regulation of high density lipoprotein apolipoprotein metabolism. Studies in normal and lipoprotein lipase-inhibited monkeys. J Clin Invest 1990;86:463-73.
78 Lakatos J, Harsagyi A. Serum total, HDL, LDL cholesterol, and triglyceride levels in patients with rheumatoid arthritis. Clin Biochem 1988;21:93-6.
79 Selamet Tierney ES, Newburger JW. Are patients with Kawasaki disease at risk for premature atherosclerosis? J Pediatr 2007;151:225-8.
80 Taubert KA, Rowley AH, Shulman ST. Seven-year national survey of Kawasaki disease and acute rheumatic fever. Pediatr Infect Dis J 1994;13:704-8.
81 Kawasaki T. Acute febrile mucocutaneous syndrome with lymphoid involvement with specific desquamation of the fingers and toes in children. Arerugi 1967;16:178-222.