Browse > Article
http://dx.doi.org/10.3345/kjp.2011.54.9.363

Catheter-related bloodstream infections in neonatal intensive care units  

Lee, Jung-Hyun (Department of Pediatrics, The Catholic University of Korea School of Medicine)
Publication Information
Clinical and Experimental Pediatrics / v.54, no.9, 2011 , pp. 363-367 More about this Journal
Abstract
Central venous catheters (CVCs) are regularly used in intensive care units, and catheter-related bloodstream infection (CRBSI) remains a leading cause of healthcare-associated infections, particularly in preterm infants. Increased survival rate of extremely-low-birth-weight infants can be partly attributed to routine practice of CVC placement. The most common types of CVCs used in neonatal intensive care units (NICUs) include umbilical venous catheters, peripherally inserted central catheters, and tunneled catheters. CRBSI is defined as a laboratory-confirmed bloodstream infection (BSI) with either a positive catheter tip culture or a positive blood culture drawn from the CVC. BSIs most frequently result from pathogens such as gram-positive cocci, coagulase-negative staphylococci, and sometimes gram-negative organisms. CRBSIs are usually associated with several risk factors, including prolonged catheter placement, femoral access, low birth weight, and young gestational age. Most NICUs have a strategy for catheter insertion and maintenance designed to decrease CRBSIs. Specific interventions slightly differ between NICUs, particularly with regard to the types of disinfectants used for hand hygiene and appropriate skin care for the infant. In conclusion, infection rates can be reduced by the application of strict protocols for the placement and maintenance of CVCs and the education of NICU physicians and nurses.
Keywords
Catheter; Bacteremia; Intensive care units; Newborn;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Taylor T, Massaro A, Williams L, Doering J, McCarter R, He J, et al. Effect of a dedicated percutaneously inserted central catheter team on neonatal catheter-related bloodstream infection. Adv Neonatal Care 2011;11:122-8.   DOI
2 Schulman J, Stricof R, Stevens TP, Horgan M, Gase K, Holzman IR, et al. Statewide NICU central-line-associated bloodstream infection rates decline after bundles and checklists. Pediatrics 2011;127:436-44.   DOI   ScienceOn
3 Matlow AG, Kitai I, Kirpalani H, Chapman NH, Corey M, Perlman M, et al. A randomized trial of 72- versus 24-hour intravenous tubing set changes in newborns receiving lipid therapy. Infect Control Hosp Epidemiol 1999;20:487-93.   DOI   ScienceOn
4 O'Grady NP, Alexander M, Dellinger EP, Gerberding JL, Heard SO, Maki DG, et al. Guidelines for the prevention of intravascular catheter-related infections. The Hospital Infection Control Practices Advisory Committee, Center for Disease Control and Prevention, U.S. Pediatrics 2002;110:e51.   DOI   ScienceOn
5 Cho HJ, Choi YH, Shin SS, Oh YJ, Hwang SC. Central venous catheter colonization and bloodstream infection: influence of catheter insertion site and duration. Infect Chemother 2005;37:65-70.
6 Linder N, Prince S, Barzilai A, Keller N, Klinger G, Shalit I, et al. Disinfection with 10% povidone-iodine versus 0.5% chlorhexidine gluconate in 70% isopropanol in the neonatal intensive care unit. Acta Paediatr 2004;93:205-10.   DOI   ScienceOn
7 Pittet D, Hulliger S, Auckenthaler R. Intravascular device-related infections in critically ill patients. J Chemother 1995;7 Suppl 3:55-66.
8 Richards MJ, Edwards JR, Culver DH, Gaynes RP. Nosocomial infections in combined medical-surgical intensive care units in the United States. Infect Control Hosp Epidemiol 2000;21:510-5.   DOI   ScienceOn
9 Benjamin DK Jr, Miller W, Garges H, Benjamin DK, McKinney RE Jr, Cotton M, et al. Bacteremia, central catheters, and neonates: when to pull the line. Pediatrics 2001;107:1272-6.   DOI   ScienceOn
10 Kaufman DA. Challenging issues in neonatal candidiasis. Curr Med Res Opin 2010;26:1769-78.   DOI   ScienceOn
11 Stoll BJ, Hansen N, Fanaroff AA, Wright LL, Carlo WA, Ehrenkranz RA, et al. Late-onset sepsis in very low birth weight neonates: the experience of the NICHD Neonatal Research Network. Pediatrics 2002; 110(2 Pt 1):285-91.   DOI
12 Maki DG. Infections due to infusion therapy. In: Bennett JV, Brachman PS, editors. Hospital infections. 3rd ed. Boston: Little Brown, 1992:849-98.
13 Pearson ML. Guideline for prevention of intravascular device-related infections. Hospital Infection Control Practices Advisory Committee. Infect Control Hosp Epidemiol 1996;17:438-73.   DOI   ScienceOn
14 Hoang V, Sills J, Chandler M, Busalani E, Clifton-Koeppel R, Modanlou HD. Percutaneously inserted central catheter for total parenteral nutrition in neonates: complications rates related to upper versus lower extremity insertion. Pediatrics 2008;121:e1152-9.   DOI
15 de Brito CS, de Brito DV, Abdallah VO, Gontijo Filho PP. Occurrence of bloodstream infection with different types of central vascular catheter in critically neonates. J Infect 2010;60:128-32.   DOI   ScienceOn
16 Edwards JR, Peterson KD, Andrus ML, Tolson JS, Goulding JS, Dudeck MA, et al. National Healthcare Safety Network (NHSN) Report, data summary for 2006, issued June 2007. Am J Infect Control 2007;35:290-301.   DOI   ScienceOn
17 Appelgren P, Ransjo U, Bindslev L, Espersen F, Larm O. Surface heparinization of central venous catheters reduces microbial colonization in vitro and in vivo: results from a prospective, randomized trial. Crit Care Med 1996;24:1482-9.   DOI   ScienceOn
18 Toltzis P. Antibiotic lock technique to reduce central venous catheter-related bacteremia. Pediatr Infect Dis J 2006;25:449-50.   DOI   ScienceOn
19 Garland JS, Alex CP, Uhing MR, Peterside IE, Rentz A, Harris MC. Pilot trial to compare tolerance of chlorhexidine gluconate to povidone-iodine antisepsis for central venous catheter placement in neonates. J Perinatol 2009;29:808-13.   DOI   ScienceOn
20 Garland JS, Alex CP, Henrickson KJ, McAuliffe TL, Maki DG. A vancomycin-heparin lock solution for prevention of nosocomial bloodstream infection in critically ill neonates with peripherally inserted central venous catheters: a prospective, randomized trial. Pediatrics 2005; 116:e198-205.   DOI   ScienceOn
21 Eggimann P, Pittet D. Overview of catheter-related infections with special emphasis on prevention based on educational programs. Clin Microbiol Infect 2002;8:295-309.   DOI   ScienceOn
22 Bryant KA, Zerr DM, Huskins WC, Milstone AM. The past, present, and future of healthcare-associated infection prevention in pediatrics: catheter-associated bloodstream infections. Infect Control Hosp Epidemiol 2010;31 Suppl 1:S27-31.
23 von Eiff C, Peters G, Heilmann C. Pathogenesis of infections due to coagulase-negative staphylococci. Lancet Infect Dis 200;2:677-85.   DOI   ScienceOn
24 Curry S, Honeycutt M, Goins G, Gilliam C. Catheter-associated bloodstream infections in the NICU: getting to zero. Neonatal Netw 2009;28:151-5.   DOI   ScienceOn
25 Racadio JM, Doellman DA, Johnson ND, Bean JA, Jacobs BR. Pediatric peripherally inserted central catheters: complication rates related to catheter tip location. Pediatrics 2001;107:E28.   DOI   ScienceOn
26 Paulson PR, Miller KM. Neonatal peripherally inserted central catheters: recommendations for prevention of insertion and postinsertion complications. Neonatal Netw 2008;27:245-57.   DOI   ScienceOn
27 Moller JC, Reiss I, Schaible T. Vascular access in neonates and infants--indications, routes, techniques and devices, complications. Intensive Care World 1995;12:48-53.
28 Schwab F, Geffers C, Barwolff S, Ruden H, Gastmeier P. Reducing neonatal nosocomial bloodstream infections through participation in a national surveillance system. J Hosp Infect 2007;65:319-25.   DOI   ScienceOn
29 Garner JS, Jarvis WR, Emori TG, Horan TC, Hughes JM. CDC definitions for nosocomial infections, 1988. Am J Infect Control 1988;16:128-40.   DOI   ScienceOn
30 Zingg W, Posfay-Barbe KM, Pfister RE, Touveneau S, Pittet D. Individualized catheter surveillance among neonates: a prospective, 8-year, single-center experience. Infect Control Hosp Epidemiol 2011;32:42-9.   DOI   ScienceOn
31 Vaudaux P, Pittet D, Haeberli A, Lerch PG, Morgenthaler JJ, Proctor RA, et al. Fibronectin is more active than fibrin or fibrinogen in promoting Staphylococcus aureus adherence to inserted intravascular catheters. J Infect Dis 1993;167:633-41.   DOI   ScienceOn
32 Hsu JF, Tsai MH, Huang HR, Lien R, Chu SM, Huang CB. Risk factors of catheter-related bloodstream infection with percutaneously inserted central venous catheters in very low birth weight infants: a center's experience in Taiwan. Pediatr Neonatol 2010;51:336-42.   DOI   ScienceOn
33 Menon G. Neonatal long lines. Arch Dis Child Fetal Neonatal Ed 2003; 88:F260-2.   DOI