Browse > Article
http://dx.doi.org/10.4196/kjpp.2018.22.5.597

Inhibition of voltage-dependent K+ current in rabbit coronary arterial smooth muscle cells by the class Ic antiarrhythmic drug propafenone  

An, Jin Ryeol (Department of Physiology, Kangwon National University School of Medicine)
Li, Hongliang (Department of Physiology, Kangwon National University School of Medicine)
Seo, Mi Seon (Department of Physiology, Kangwon National University School of Medicine)
Park, Won Sun (Department of Physiology, Kangwon National University School of Medicine)
Publication Information
The Korean Journal of Physiology and Pharmacology / v.22, no.5, 2018 , pp. 597-605 More about this Journal
Abstract
In this study, we demonstrated the inhibitory effect of the Class Ic antiarrhythmic agent propafenone on voltage-dependent $K^+$ (Kv) channels using freshly isolated coronary artery smooth muscle cells from rabbits. The Kv current amplitude was progressively inhibited by propafenone in a dose-dependent manner, with an apparent $IC_{50}$ value of $5.04{\pm}1.05{\mu}M$ and a Hill coefficient of $0.78{\pm}0.06$. The application of propafenone had no significant effect on the steady-state activation and inactivation curves, indicating that propafenone did not affect the voltage-sensitivity of Kv channels. The application of train pulses at frequencies of 1 or 2 Hz progressively increased the propafenone-induced inhibition of the Kv current. Furthermore, the inactivation recovery time constant was increased after the application of propafenone, suggesting that the inhibitory action of propafenone on Kv current is partially use-dependent. Pretreatment with Kv1.5, Kv2.1 or Kv7 inhibitor did not change the inhibitory effect of propafenone on the Kv current. Together, these results suggest that propafenone inhibits the vascular Kv channels in a dose- and use-dependent manner, regardless of $Na^+$ channel inhibition.
Keywords
Coronary artery; Propafenone; Smooth muscle; Voltage-dependent $K^+$ channel;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Shin SE, Li H, Kim HS, Kim HW, Seo MS, Ha KS, Han ET, Hong SH, Firth AL, Choi IW, Bae YM, Park WS. Nortriptyline, a tricyclic antidepressant, inhibits voltage-dependent $K^{+}$ channels in coronary arterial smooth muscle cells. Korean J Physiol Pharmacol. 2017;21:225-232.   DOI
2 Li H, Kim HS, Kim HW, Shin SE, Jung WK, Ha KS, Han ET, Hong SH, Firth AL, Bae YM, Choi IW, Park WS. The class III antiarrhythmic agent, amiodarone, inhibits voltage-dependent $K^{+}$ channels in rabbit coronary arterial smooth muscle cells. Naunyn Schmiedebergs Arch Pharmacol. 2016;389:713-721.   DOI
3 Xu C, Lu Y, Tang G, Wang R. Expression of voltage-dependent $K^{+}$ channel genes in mesenteric artery smooth muscle cells. Am J Physiol. 1999;277:G1055-1063.
4 Jepps TA, Olesen SP, Greenwood IA. One man's side effect is another man's therapeutic opportunity: targeting Kv7 channels in smooth muscle disorders. Br J Pharmacol. 2013;168:19-27.   DOI
5 Thorneloe KS, Chen TT, Kerr PM, Grier EF, Horowitz B, Cole WC, Walsh MP. Molecular composition of 4-aminopyridine-sensitive voltage-gated $K^{+}$ channels of vascular smooth muscle. Circ Res. 2001;89:1030-1037.   DOI
6 Li Q, Zhang R, Lu CL, Liu Y, Wang Z, Zhu DL. The role of subtypes of voltage-gated $K^{+}$ channels in pulmonary vasoconstriction induced by 15-hydroeicosatetraenoic acid. Yao Xue Xue Bao. 2006;41:412-417.
7 Cox RH, Fromme S. Functional expression profile of voltage-gated $K^{+}$ channel subunits in rat small mesenteric arteries. Cell Biochem Biophys. 2016;74:263-276.   DOI
8 Stott JB, Povstyan OV, Carr G, Barrese V, Greenwood IA. G-protein ${\beta}{\gamma}$ subunits are positive regulators of Kv7.4 and native vascular Kv7 channel activity. Proc Natl Acad Sci U S A. 2015;112:6497-6502.   DOI
9 Kang KW, Shim J, Ahn J, Lee DI, Kim J, Joung B, Choi KJ. 2018 Korean heart rhythm society guidelines for antiarrhythmic drug therapy in non-valvular atrial fibrillation. Korean J Med. 2018;93:140-152.   DOI
10 Siddoway LA, Roden DM, Woosley RL. Clinical pharmacology of propafenone: pharmacokinetics, metabolism and concentrationresponse relations. Am J Cardiol. 1984;54:9D-12D.   DOI
11 Nelson MT, Patlak JB, Worley JF, Standen NB. Calcium channels, potassium channels, and voltage dependence of arterial smooth muscle tone. Am J Physiol. 1990;259:C3-18.   DOI
12 Duan D, Fermini B, Nattel S. Potassium channel blocking properties of propafenone in rabbit atrial myocytes. J Pharmacol Exp Ther. 1993;264:1113-1123.
13 Kishore AG, Camm AJ. Guidelines for the use of propafenone in treating supraventricular arrhythmias. Drugs. 1995;50:250-262.   DOI
14 Benz I, Kohlhardt M. Responsiveness of cardiac Na+ channels to antiarrhythmic drugs: the role of inactivation. J Membr Biol. 1991;122:267-278.   DOI
15 Delgado C, Tamargo J, Henzel D, Lorente P. Effects of propafenone on calcium current in guinea-pig ventricular myocytes. Br J Pharmacol. 1993;108:721-727.   DOI
16 Delpon E, Valenzuela C, Perez O, Casis O, Tamargo J. Propafenone preferentially blocks the rapidly activating component of delayed rectifier $K^{+}$ current in guinea pig ventricular myocytes. Voltageindependent and time-dependent block of the slowly activating component. Circ Res. 1995;76:223-235.   DOI
17 Cook NS. Effect of some potassium channel blockers on contractile responses of the rabbit aorta. J Cardiovasc Pharmacol. 1989;13:299-306.   DOI
18 Cogolludo AL, Perez-Vizcaino F, Lopez-Lopez G, Ibarra M, Zaragoza-Arnaez F, Tamargo J. Propafenone modulates potassium channel activities of vascular smooth muscle from rat portal veins. J Pharmacol Exp Ther. 2001;299:801-810.
19 Nelson MT, Quayle JM. Physiological roles and properties of potassium channels in arterial smooth muscle. Am J Physiol. 1995;268:C799-822.   DOI
20 Leblanc N, Wan X, Leung PM. Physiological role of $Ca^{2+}$-activated and voltage-dependent $K^{+}$ currents in rabbit coronary myocytes. Am J Physiol. 1994;266:C1523-1537.   DOI
21 Hara Y, Kitamura K, Kuriyama H. Actions of 4-aminopyridine on vascular smooth muscle tissues of the guinea-pig. Br J Pharmacol. 1980;68:99-106.   DOI
22 Uchida Y, Nakamura F, Tomaru T, Sumino S, Kato A, Sugimoto T. Phasic contractions of canine and human coronary arteries induced by potassium channel blockers. Jpn Heart J. 1986;27:727-740.   DOI
23 Ko EA, Han J, Jung ID, Park WS. Physiological roles of $K^{+}$ channels in vascular smooth muscle cells. J Smooth Muscle Res. 2008;44:65-81.   DOI
24 Bratz IN, Dick GM, Partridge LD, Kanagy NL. Reduced molecular expression of $K^{+}$ channel proteins in vascular smooth muscle from rats made hypertensive with N{omega}-nitro-L-arginine. Am J Physiol Heart Circ Physiol. 2005;289:H1277-1283.   DOI
25 Wang Q, Curran ME, Splawski I, Burn TC, Millholland JM, Van-Raay TJ, Shen J, Timothy KW, Vincent GM, de Jager T, Schwartz PJ, Toubin JA, Moss AJ, Atkinson DL, Landes GM, Connors TD, Keating MT. Positional cloning of a novel potassium channel gene: KVLQT1 mutations cause cardiac arrhythmias. Nat Genet. 1996;12:17-23.   DOI
26 Hii JT, Wyse DG, Gillis AM, Cohen JM, Mitchell LB. Propafenoneinduced torsade de pointes: cross-reactivity with quinidine. Pacing Clin Electrophysiol. 1991;14:1568-1570.   DOI
27 Snyders DJ, Yeola SW. Determinants of antiarrhythmic drug action. Electrostatic and hydrophobic components of block of the human cardiac hKv1.5 channel. Circ Res. 1995;77:575-583.   DOI
28 Lee HA, Hyun SA, Park SG, Kim KS, Kim SJ. Comparison of electrophysiological effects of calcium channel blockers on cardiac repolarization. Korean J Physiol Pharmacol. 2016;20:119-127.   DOI
29 Kuriyama H, Kitamura K, Nabata H. Pharmacological and physiological significance of ion channels and factors that modulate them in vascular tissues. Pharmacol Rev. 1995;47:387-573.
30 Rehnqvist N, Ericsson CG, Eriksson S, Olsson G, Svensson G. Comparative investigation of the antiarrhythmic effect of propafenone (Rytmonorm) and lidocaine in patients with ventricular arrhythmias during acute myocardial infarction. Acta Med Scand. 1984;216:525-530.
31 Slawsky MT, Castle NA. $K^{+}$ channel blocking actions of flecainide compared with those of propafenone and quinidine in adult rat ventricular myocytes. J Pharmacol Exp Ther. 1994;269:66-74.
32 Hoppe UC, Beuckelmann DJ. Modulation of the hyperpolarizationactivated inward current (If) by antiarrhythmic agents in isolated human atrial myocytes. Naunyn Schmiedebergs Arch Pharmacol. 1998;358:635-640.   DOI
33 Kim HS, Li H, Kim HW, Shin SE, Seo MS, An JR, Ha KS, Han ET, Hong SH, Choi IW, Choi G, Lee DS, Park WS. Escitalopram, a selective serotonin reuptake inhibitor, inhibits voltage-dependent $K^{+}$ channels in coronary arterial smooth muscle cells. Korean J Physiol Pharmacol. 2017;21:415-421.   DOI