Browse > Article

Characteristics of Hardness of $(Cr,\;Fe)_7C_3$ in the Chromium-Carbide-Type Chromium White Iron Hardfacing Weld Deposits  

Baek Eung-Ryul (School of Materials Science & Engineering, Yeungnam University)
Publication Information
Journal of Welding and Joining / v.23, no.2, 2005 , pp. 75-80 More about this Journal
Abstract
The effect of chemical constituents of $(Cr,\;Fe)_7C_3$ carbide phase on its hardness in the chromium-carbide type Cr white iron hardfacing weld deposits has been investigated. In order to examine $(Cr,\;Fe)_7C_3$ carbide phase, a series of filler metals with varying chromium contents was used. The alloys were deposited once or twice on a mild steel plate using the self?shielding flux cored arc welding process. The hardness of $(Cr,\;Fe)_7C_3$ carbide phase was measured by the micro-Vickers hardness test. It was shown that hardness of $(Cr,\;Fe)_7C_3$ carbide phase increased with increasing Cr content in $(Cr,\;Fe)_7C_3$ carbide phase. This behavior of the hardness of $(Cr,\;Fe)_7C_3$ carbide phase was explained by the types of chemical bonds that hold atoms together in $(Cr,\;Fe)_7C_3$ carbide phase.
Keywords
Citations & Related Records
연도 인용수 순위
  • Reference
1 F. Borik and J. C. Majetich: Factor Affecting Abrasion Resistance of Commercial Hardfacing Alloys. in K. C. Ludema (ed.), Wear of Materials 1985, American Society of Mechanical Engineers, New York, 1985, 595-604
2 F. Maratrav: Choice of Appropriate Compositions for Chromium-Molybdenum White Irons, AFS Trans., 79 (1971). 121-124
3 G. L. F. Powell: The Microstructure of Hypereutectic Cr-C Hard Surfacing Deposits and Its Dependence on Welding Variables. Australian Welding Research. Jan. (1979). 16-23
4 F. M. Miller: Chemistry:Structure and Dynamics, McGraw-Hill. (1984), 185
5 American Welding Society. A5. 13-70
6 T. Ellis and G. G. Garrett: Influence of Process Variables in Flux Cored Arc Welding of Hardfacing Deposits. Surface Engineering. 2-1 (1986). 55-66   DOI
7 J. D. Watson and P. J. Mutton: Evaluation of the Wear Resistance of Hardfacing Alloys. Australian Welding Research. Nov., (1981). 1-15
8 V. M. Desai, C. M. Rao, T. H. Kosel and N. F. Fiore: Effect of Carbide Size on the Abrasion of Cobalt-Base Powder Metallurgy Alloys, Wear, 94 (1984). 89-101   DOI   ScienceOn
9 J. T. H. Pearce: Structure and Wear Performance of Abrasion Resistant Chromium White Cast Irons. AFS Transactions, 84-126 (1984). 599-622
10 H. S. Avery and H. J. Chapin: Hard-Facing Alloys of the Chromium Carbide Type. The Welding Journal, Oct., (1952). 917-930
11 M. Hillert and C. Qiu: Thermodynamic Assessment of the Fe-Cr-Ni-C System, Metall. Trans., 22A (1991). 2187-2198   DOI
12 W. R. Thorpe: The Effect of Welding Variables in Automatic Open-Arc Hardfacing with an Austenitic Chromium Carbide Alloy, Metals Forum. 3-1 (1980), 62-73
13 A. G. Wang and I. M. Hutchings: Wear of Alumina Fibre-Aluminium Metal Matrix Composites by Two-Body Abrasion. Mat. Sci. Tech., 5 (1989). 71-76   DOI   ScienceOn
14 U.S. Patent No. 1,245,552 (1917)
15 J. K. Fulcher. T. H. Kosel and N. F. Fiore: The Effect of Carbide Volume Fraction on the Low Stress Abrasion Resistance of High Cr-Mo White Cast Irons. Wear. 84 (1983). 313-325   DOI   ScienceOn
16 R. S. Jackson: The Austenite Liquidus Surface and Constitutional Diagram for the Fe-Cr-C Metastable System. J. of the Iron & Steel Institute, Feb. 208 (1970). 163-167
17 Louis E. Toth: Transition Metal Carbides and Nitrides, Academic Press, New York & London. (1971), 179
18 H. Drzeniek, M. Kowalski and E. Lugscheider: 'Wear-Resistant Hardfacing with Cored Wire Electrodes of Fe-Cr-C Alloy's, Surfacing Journal, 16-4. (1985). 121-125
19 ASTM A532-87. Standard Specification for Abrasion-Resistant Cast Iron. Philadelphia, Pa, ASTM
20 E. R. Baek: Effect of Volume Fraction of Cr Carbide Phase on the Abrasive Wear Behavior of the High Cr White Iron Hardfacing Weld Deposits, J. of the Korean Welding Society. 16-1 (1998). 125-133(in Korean)
21 S. V. Prasad and T. H. Kosel: A Study of Carbide Removal Mechanism during Quartz Abrasion I: IN SITU Scratch Test Studies. Wear, 92 (1983), 253-268   DOI   ScienceOn
22 T. Kulik, T. H. Kosel and Y. Xu: Effect of Depth of Cut on Second-Phase Particle Fracture in Abrasion of Two-Phase Alloys, Wear of Materials 1989. Vol. II, American Society of Mechanical Engineers, New York, 1989, 23-32
23 Hugh O. Pierson: Handbook of Refractory Carbides and Nitride, Noyes Publication(NP). New Jersey. (1996). 36-42
24 C. E. C. Rense, G. R. Edwards and H. R. Frost: J. Materials for Energy Systems. 5-3 (1983). 149-159   DOI
25 C. P. Tabrett, I. R. Sare and M. R. Ghomashchi: Microstructure-property Relationships in High Chromium White Iron Alloys, International Materials Reviews, 41-2 (1996), 59-82   DOI   ScienceOn
26 N. Axen and K. -H. Zum Gahr: Abrasive Wear of TiC-Steel Composite Clad Layers on Tool Steel, Wear, 157 (1992). 189-201   DOI   ScienceOn
27 K-H Z. Gahr and D. V. Doane: Optimizing Fracture Toughness and Abrasion Resistance in White Cast Irons. Met. Trans. A. 11A, April. (1980), 613-620   DOI