Browse > Article
http://dx.doi.org/10.17480/psk.2015.59.3.113

A Comparison between C4 and Cation-exchange Columns as a Pre-separation Method for Mass Spectrometric Analysis to Characterize a Global Identification of Phosphopeptides and Phosphorylation Sites  

Kim, Hye-Jeong (Department of Molecular Medicine, School of Medicine, Cell and Matrix Research Institute, Kyungpook National University)
Baek, Moon-Chang (Department of Molecular Medicine, School of Medicine, Cell and Matrix Research Institute, Kyungpook National University)
Publication Information
YAKHAK HOEJI / v.59, no.3, 2015 , pp. 113-119 More about this Journal
Abstract
Protein phosphorylation is one of most important post-translational modifications (PTMs) and plays an important role in regulation of protein function. Here we develop a method for a global identification of phosphopeptides and phosphorylation sites using nano-LC MS/MS. We compared two separation methods, C4 and strong cation ion exchange (SCX). Before phosphopeptides enrichment with $TiO_2$, total proteins from Rat 1 cells have been separated using C4 column or tryptic peptides of proteins from the cells have been separated using SCX column. Finally, we have detected 52 phosphorylation sites on 41 proteins from SCX method and 375 phosphorylation sites on 252 proteins from C4 method, and determined the function and localization of identified phosphoproteins using DAVID software. In particular, we showed new phosphorylation sites from membrane proteins related to various cell signaling mechanisms. This method may contribute to study global signal networks induced by various signals including ligands and drugs.
Keywords
phosphopeptide; mass spectrometry; strong cation ion exchange; C4 column; $TiO_2$;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Hunter, T. : The Croonian Lecture 1997. The phosphorylation of proteins on tyrosine: its role in cell growth and disease. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 353, 583 (1998).   DOI
2 Hunter, T. : Signaling 2000 and beyond. Cell 100, 113 (2000).   DOI
3 Pawson, T. and Nash, P. : Assembly of cell regulatory systems through protein interaction domains. Science 300, 445 (2003).   DOI
4 Mumby, M. and Brekken, D. : Phosphoproteomics: new insights into cellular signaling. Genome Biol. 6, 230 (2005).   DOI
5 Machida, K., Mayer, B. J. and Nollau, P. : Profiling the Global Tyrosine phosphorylation state. Mol. Cell Proteomics 2, 215 (2003).   DOI
6 Mclachlin, D. T. and Chait, B. T. : Improved ${\beta}$-elimination-based affinity purification strategy for enrichment of phosphopeptides. Anal. Chem. 75, 6826 (2003).   DOI
7 Lee, J., Xu, Y., Chen, Y., Sprung, R., Kim, S. C., Xie, S. and Zhao, Y. : Mitochondrial phosphoproteome revealed by an improved IMAC method and MS/MS/MS. Mol. Cell. Proteomics 6, 669 (2007).   DOI
8 Nuhse, T. S., Stensballe, A., Jensen, O. N. and Peck, S. C. : Large-scale ananlysis of in vivo phosphorylated membrane proteins by immobilized metal ion affinity chromatography and mass spectrometry. Mol. Cell. Proteomics 2, 1234 (2003).   DOI
9 Zhou, W., Merrick, B. A., Khaledi, M. G. and Tomer, K. B. : Detection and sequencing of phosphopeptides affinity bound to immobilized metal ion beads by matrix-assisted laser desorption/ionization mass spectrometry. J. Am. Soc. Mass Spectrom 11, 273 (2000).   DOI
10 Zhang, X., Ye, J., Jensen, O. N. and Roepstorff, P. : Highly efficient phosphopeptide enrichment by calcium phosphate precipitation combined with subsequent serial immobilized metal ion affinity chromatography (IMAC) enrichment. Mol. Cell. Proteomics 6, 2032 (2007).   DOI
11 Larsen, M. R., Thingholm, T. E., Jensen, O. N., Roepstorff, P. and Jorgensen, T. J. : Highly selective Enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Mol. Cell. Proteomics 4, 873 (2005).   DOI
12 Thingholm, T. E., Jorgensen, T. J., Jensen, O. N. and Larsen, M. R. : Highly selective enrichment of phosphorylated peptides using titanium dioxide. Nat. Protoc. 1, 1929 (2006).   DOI
13 Pinkse, M. W., Uitto, P. M., Hilhorst, M. J., Ooms, B. and Heck, A. J. : Selective isolation at the femtomole level of phosphopeptides from proteolytic digests using 2D-NanoLC-ESI-MS/MS and titanium oxide precolumns. Anal. Chem. 76, 3935 (2004).   DOI
14 Imanishi, S. Y., Kochin, V., Ferraris, S. E., de Thonel, A., Pallari, H. M., Corthals, G. L. and Eriksson, J. E. : Reference-facilitated phosphoproteomics:fast and reliable phosphopeptide validation by ${\mu}LC$-ESI-Q-TOF MS/MS. Mol. Cell Proteomics 6, 1380 (2007).   DOI
15 Aebersold, R. and Mann, M. : Mass spectrometry-based proteomics. Nature 422, 198 (2003).   DOI
16 Olsen, J. V., Blagoev, B., Gnad, F., Macek, B., Kumar, C., Mortensen, P. and Mann, M. : Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127, 635 (2006).   DOI
17 Villen, J., Beausoleil, S. A., Gerber, S. A. and Gygi, S. P. : Large-scale phosphorylation analysis of mouse liver. Proc. Natl. Acad Sci. 104, 1488 (2006).