Browse > Article
http://dx.doi.org/10.3831/KPI.2022.25.2.121

Chemical Composition of Cactus Pear Seed Oil: phenolics identification and antioxidant activity  

Ali, Berraaouan (Laboratory of Bioressources, Biotechnologies, Ethnopharmacology and Health, Mohammed the First University, Faculty of Sciences)
Abderrahim, Ziyyat (Laboratory of Bioressources, Biotechnologies, Ethnopharmacology and Health, Mohammed the First University, Faculty of Sciences)
Hassane, Mekhfi (Laboratory of Bioressources, Biotechnologies, Ethnopharmacology and Health, Mohammed the First University, Faculty of Sciences)
Marianne, Sindic (Laboratory of Agroalimentary Products Quality and Safety, Unit of Quality Analysis and Hazard, Gembloux Agro-Bio Tech, University of Liege)
Marie-Laure, Fauconnier (Laboratory of Volatolomics, Unit of General and Organic Chemistry, Gembloux Agro-Bio Tech, University of Liege)
Abdelkhaleq, Legssyer (Laboratory of Bioressources, Biotechnologies, Ethnopharmacology and Health, Mohammed the First University, Faculty of Sciences)
Mohammed, Aziz (Laboratory of Bioressources, Biotechnologies, Ethnopharmacology and Health, Mohammed the First University, Faculty of Sciences)
Mohamed, Bnouham (Laboratory of Bioressources, Biotechnologies, Ethnopharmacology and Health, Mohammed the First University, Faculty of Sciences)
Publication Information
Journal of Pharmacopuncture / v.25, no.2, 2022 , pp. 121-129 More about this Journal
Abstract
Objectives: The chemical composition of cactus pear seed oil (Opuntia ficus-indica [L.] Mill.) was analyzed in terms of its fatty acid composition, tocopherol content, phenolic identification, and the oil's phenolic-rich fraction antioxidant power was determined. Methods: Fatty acid profiling was performed by gas chromatography coupled to an FI detector. Tocopherols and phenolic compounds were analyzed by LC-FLD/UV, and the oil's phenolic-rich fraction antioxidant power was determined by phosphomolybdenum, DPPH assay and β-carotene bleaching test. Results: Fatty acid composition was marked by a high unsaturation level (83.22 ± 0.34%). The predominant fatty acid was linoleic acid (66.79 ± 0.78%), followed by oleic acid (15.16 ± 0.42%) and palmitic acid (12.70 ± 0.03%). The main tocopherol was γ-tocopherol (172.59 ± 7.59 mg/kg. In addition, Tyrosol, vanillic acid, vanillin, ferulic acid, pinoresinol, and cinnamic acid were identified as phenolic compounds in the analyzed seed oil. Moreover, the oil's phenolics-rich fraction showed a significant total antioxidant activity, scavenged DPPH up to 97.85%, and effectively protected β-carotene against bleaching (97.56%). Conclusion: The results support the potential use of cactus pear seed oil as a functional food.
Keywords
cactus pear; seed oil; tocopherols; phenolics-rich fraction; opuntia ficus-indica; antioxidant activity;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Ainsworth EA, Gillespie KM. Estimation of total phenolic content and other oxidation substrates in plant tissues using FolinCiocalteu reagent. Nat Protoc. 2007;2(4):875-7.   DOI
2 Liu W, Fu YJ, Zu YG, Tong MH, Wu N, Liu XL, et al. Supercritical carbon dioxide extraction of seed oil from Opuntia dillenii Haw. and its antioxidant activity. Food Chem. 2009;114(1):334-9.   DOI
3 Sahreen S, Khan MR, Khan RA. Evaluation of antioxidant activities of various solvent extracts of Carissa opaca fruits. Food Chem. 2010;122(4):1205-11.   DOI
4 Labuschagne MT, Hugo A. Oil content and fatty acid composition of cactus pear seed compared with cotton and grape seed. J Food Biochem. 2010;34(1):93-100.   DOI
5 Coskuner Yn, Tekin A. Monitoring of seed composition of prickly pear (Opuntia ficus-indica L) fruits during maturation period. J Sci Food Agric. 2003;83(8):846-9.   DOI
6 Sawaya WN, Khan P. Chemical characterization of prickly pear seed oil, Opuntia ficus-indica. J Food Sci. 1982;47(6):2060-1.   DOI
7 Ramadan MF, Morsel JT. Oil cactus pear (Opuntia ficus-indica L.). Food Chem. 2003;82(3):339-45.   DOI
8 Chougui N, Tamendjari A, Hamidj W, Hallal S, Barras A, Richard T, et al. Oil composition and characterisation of phenolic compounds of Opuntia ficus-indica seeds. Food Chem. 2013;139(1-4):796-803.   DOI
9 Nounah I, Chbani M, Matthaus B, Charrouf Z, Hajib A, Willenberg I. Profile of volatile aroma-active compounds of cactus seed oil (Opuntia ficus-indica) from different locations in Morocco and their fate during seed roasting. Foods. 2020;9(9):1280.   DOI
10 Brenes M, Garcia A, Garcia P, Garrido A. Rapid and complete extraction of phenols from olive oil and determination by means of a coulometric electrode array system. J Agric Food Chem. 2000;48(11):5178-83.   DOI
11 Haig T. Allelochemicals in plants. In: Zeng R, Mallik A, Luo S, editors. Allelopathy in sustainable agriculture and forestry. New York (NY): Springer; 2008. p. 63-104.
12 Pryor WA. TOCOPHEROLS/Physiology. In: Caballero B, editor. Encyclopedia of food sciences and nutrition. 2nd ed: Amsterdam: Academic Press; 2003. p. 5796-800.
13 Sales-Campos H, Souza PR, Peghini BC, da Silva JS, Cardoso CR. An overview of the modulatory effects of oleic acid in health and disease. Mini Rev Med Chem. 2013;13(2):201-10.   DOI
14 Cao J, Li H, Xia X, Zou XG, Li J, Zhu XM, et al. Effect of fatty acid and tocopherol on oxidative stability of vegetable oils with limited air. Int J Food Prop. 2015;18(4):808-20.   DOI
15 Kamal-Eldin A, Andersson R. A multivariate study of the correlation between tocopherol content and fatty acid composition in vegetable oils. J Am Oil Chem Soc. 1997;74(4):375-80.   DOI
16 Jiang Q, Ames BN. Gamma-tocopherol, but not alpha-tocopherol, decreases proinflammatory eicosanoids and inflammation damage in rats. FASEB J. 2003;17(8):816-22.   DOI
17 Martins JLR, Silva DM, Gomes EH, Fava SA, Carvalho MF, Macedo IYL, et al. Evaluation of gastroprotective activity of linoleic acid on gastric ulcer in a mice model. Curr Pharm Des. 2022;28(8):655-60.   DOI
18 El Mannoubi I, Barrek S, Skanji T, Casabianca H, Zarrouk H. Characterization of Opuntia ficus indica seed oil from Tunisia. Chem Nat Compd. 2009;45(5):616-20.   DOI
19 Akao Y, Maruyama H, Matsumoto K, Ohguchi K, Nishizawa K, Sakamoto T, et al. Cell growth inhibitory effect of cinnamic acid derivatives from propolis on human tumor cell lines. Biol Pharm Bull. 2003;26(7):1057-9.   DOI
20 Tlili N, Bargougui A, Elfalleh W, Triki S, Nasri N. Phenolic compounds, protein, lipid content and fatty acids compositions of cactus seeds. J Med Plants Res. 2011;5(18):4519-24.
21 Inderjit. Plant phenolics in allelopathy. Bot Rev. 1996;62(2):186-202.   DOI
22 Dziedzic SZ, Hudson BJF. Phenolic acids and related compounds as antioxidants for edible oils. Food Chem. 1984;14(1):45-51.   DOI
23 Kamat JP, Ghosh A, Devasagayam TP. Vanillin as an antioxidant in rat liver mitochondria: inhibition of protein oxidation and lipid peroxidation induced by photosensitization. Mol Cell Biochem. 2000;209(1-2):47-53.   DOI
24 Lirdprapamongkol K, Sakurai H, Kawasaki N, Choo MK, Saitoh Y, Aozuka Y, et al. Vanillin suppresses in vitro invasion and in vivo metastasis of mouse breast cancer cells. Eur J Pharm Sci. 2005;25(1):57-65.   DOI
25 Bu Y, Rho S, Kim J, Kim MY, Lee DH, Kim SY, et al. Neuroprotective effect of tyrosol on transient focal cerebral ischemia in rats. Neurosci Lett. 2007;414(3):218-21.   DOI
26 Tai A, Sawano T, Ito H. Antioxidative properties of vanillic acid esters in multiple antioxidant assays. Biosci Biotechnol Biochem. 2012;76(2):314-8.   DOI
27 Koleva II, van Beek TA, Linssen JP, de Groot A, Evstatieva LN. Screening of plant extracts for antioxidant activity: a comparative study on three testing methods. Phytochem Anal. 2002;13(1):8-17.   DOI
28 Matthaus B, Ozcan MM. Habitat effects on yield, fatty acid composition and tocopherol contents of prickly pear (Opuntia ficusindica L.) seed oils. Sci Hortic. 2011;131:95-8.   DOI
29 Kumar S, Prahalathan P, Raja B. Vanillic acid: a potential inhibitor of cardiac and aortic wall remodeling in l-NAME induced hypertension through upregulation of endothelial nitric oxide synthase. Environ Toxicol Pharmacol. 2014;38(2):643-52.   DOI
30 Cinkilic N, Tuzun E, Cetintas SK, Vatan O, Yilmaz D, Cavas T, et al. Radio-protective effect of cinnamic acid, a phenolic phytochemical, on genomic instability induced by X-rays in human blood lymphocytes in vitro. Mutat Res Genet Toxicol Environ Mutagen. 2014;770:72-9.   DOI
31 Grigelmo-Miguel N, Rojas-Grau MA, Soliva-Fortuny R, MartinBelloso O. Methods of analysis of antioxidant capacity of phytochemicals. In: de la Rosa LA, Alvarez-Parrilla E, Gonzalez-Aguilar GA, editors. Fruit and vegetable phytochemicals: chemistry and human health. 2nd ed. Chichester: Wiley-Blackwell; 2009. p. 271-307.
32 Kumaran A, Joel Karunakaran R. In vitro antioxidant activities of methanol extracts of five Phyllanthus species from India. LWT. 2007;40(2):344-52.   DOI
33 DelRio D, Rodriguez-Mateos A, Spencer JP, Tognolini M, Borges G, Crozier A. Dietary (poly)phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid Redox Signal. 2013;18(14):1818-92.   DOI
34 Benayad Z, Martinez-Villaluenga C, Frias J, Gomez-Cordoves C, Es-Safi NE. Phenolic composition, antioxidant and anti-inflammatory activities of extracts from Moroccan Opuntia ficusindica flowers obtained by different extraction methods. Ind Crops Prod. 2014;62:412-20.   DOI
35 Ennouri M, Evelyne B, Laurence M, Hamadi A. Fatty acid composition and rheological behaviour of prickly pear seed oils. Food Chem. 2005;93(3):431-7.   DOI
36 Tounsi MS, Ouerghemmi I, Ksouri R, Wannes WA, Hammrouni I, Marzouk B. HPLC-determination of phenolic composition and antioxidant capacity of cactus prickly pears seeds. Asian J Chem. 2011;23(3):1006-10.
37 Moumen AB, Mansouri F, Richard G, Abid M, Fauconnier ML, Sindic M, et al. Biochemical characterisation of the seed oils of four safflower (Carthamus tinctorius) varieties grown in northeastern of Morocco. Int J Food Sci Technol. 2015;50(3):804-10.   DOI
38 Ramadan M, Morsel JT. Direct isocratic normal-phase HPLC assay of fat-soluble vitamins and β-carotene in oilseeds. Eur Food Res Technol. 2002;214(6):521-7.   DOI
39 Al-Khudairy L, Hartley L, Clar C, Flowers N, Hooper L, Rees K. Omega 6 fatty acids for the primary prevention of cardiovascular disease. Cochrane Database Syst Rev. 2015;(11):CD011094.
40 Wanasundara PKJPD, Shahidi F, Shukla VKS. Endogenous antioxidants from oilseeds and edible oils. Food Rev Int. 1997;13(2):225-92.   DOI
41 Lee J, Cho JY, Lee SY, Lee KW, Lee J, Song JY. Vanillin protects human keratinocyte stem cells against ultraviolet B irradiation. Food Chem Toxicol. 2014;63:30-7.   DOI
42 Ou S, Kwok KC. Ferulic acid: pharmaceutical functions, preparation and applications in foods. J Sci Food Agric. 2004;84(11):1261-9.   DOI
43 Shen SC, Chang WC, Chen JW, Kuo PL, Wu JSB. Anti-hyperglycemic effect of vanillic acid in high-fat diet induced prediabetic rats. Ann Nutr Metab. 2013;63:1181.
44 Antolovich M, Prenzler PD, Patsalides E, McDonald S, Robards K. Methods for testing antioxidant activity. Analyst. 2002;127(1):183-98.   DOI
45 Shahidi F, Wanasundara PK. Phenolic antioxidants. Crit Rev Food Sci Nutr. 1992;32(1):67-103.   DOI
46 Dewapriya P, Himaya SW, Li YX, Kim SK. Tyrosol exerts a protective effect against dopaminergic neuronal cell death in in vitro model of Parkinson's disease. Food Chem. 2013;141(2):1147-57.   DOI