Browse > Article
http://dx.doi.org/10.3831/KPI.2022.25.1.52

Qualitative Analysis of Proteins in Two Snake Venoms, Gloydius Blomhoffii and Agkistrodon Acutus  

Ha, Su-Jeong (East West Cancer Center, Daejeon Korean Medicine Hospital, Daejeon University)
Choi, Yeo-Ok (Bio Research Institute of Biotechnology)
Kwag, Eun-Bin (East West Cancer Center, Daejeon Korean Medicine Hospital, Daejeon University)
Kim, Soo-Dam (East West Cancer Center, Daejeon Korean Medicine Hospital, Daejeon University)
Yoo, Hwa-seung (East West Cancer Center, Seoul Korean Medicine Hospital, Daejeon University)
Kang, In-Cheol (Department of Biological Science and BioChip Research Center, Hoseo University)
Park, So-Jung (East West Cancer Center, Daejeon Korean Medicine Hospital, Daejeon University)
Publication Information
Journal of Pharmacopuncture / v.25, no.1, 2022 , pp. 52-62 More about this Journal
Abstract
Objectives: Snake venom is a complex mixture of various pharmacologically active substances, such as small proteins, peptides, and organic and mineral components. This paper aims to identify and analyse the proteins in common venomous snakes, such as Gloydius blomhoffii (G. blomhoffii) and Agkistrodon acutus (A. acutus), in Korea. Methods: We used mass spectrometry, electrophoresis, N-terminal sequencing and in-gel digestion to analyse the proteins in these two snake venoms. Results: We identified eight proteins in G. blomhoffii venom and four proteins in A. acutus venom. The proteins detected in G. blomhoffii and A. acutus venoms were phospholipase A2, snake venom metalloproteinase and cysteine-rich secretory protein. Snake C-type lectin (snaclec) was unique to A. acutus venom. Conclusion: These data will contribute to the current knowledge of proteins present in the venoms of viper snakes and provide useful information for investigating their therapeutic potential.
Keywords
gloydius blomhoffii; agkistrodon acutus; proteomics; venomics; venom proteome;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Matsunaga Y, Yamazaki Y, Hyodo F, Sugiyama Y, Nozaki M, Morita T. Structural divergence of cysteine-rich secretory proteins in snake venoms. J Biochem. 2009;145(3):365-75.   DOI
2 Khunsap S, Pakmanee N, Khow O, Chanhome L, Sitprija V, Suntravat M, et al. Purification of a phospholipase A(2) from Daboia russelii siamensis venom with anticancer effects. J Venom Res. 2011;2:42-51.
3 Kasai K, Ishikawa T, Nakamura T, Miura T. Antibacterial properties of L-amino acid oxidase: mechanisms of action and perspectives for therapeutic applications. Appl Microbiol Biotechnol. 2015;99(19):7847-57.   DOI
4 Liu CZ, Huang TF. Crovidisin, a collagen-binding protein isolated from snake venom of Crotalus viridis, prevents plateletcollagen interaction. Arch Biochem Biophys. 1997;337(2):291-9.   DOI
5 Swenson S, Bush LR, Markland FS. Chimeric derivative of fibrolase, a fibrinolytic enzyme from southern copperhead venom, possesses inhibitory activity on platelet aggregation. Arch Biochem Biophys. 2000;384(2):227-37.   DOI
6 Smith J, Dangelmaier C, Selak M. Identification of 50 kDa snake venom proteins which specifically inhibit platelet adhesion to collagen. FEBS Lett. 1991;283(2):307-10.   DOI
7 Gatineau E, Takechi M, Bouet F, Mansuelle P, Rochat H, Harvey AL, et al. Delineation of the functional site of a snake venom cardiotoxin: preparation, structure, and function of monoacetylated derivatives. Biochemistry. 1990;29(27):6480-9.   DOI
8 Vaiyapuri S, Wagstaff SC, Watson KA, Harrison RA, Gibbins JM, Hutchinson EG. Purification and functional characterisation of rhiminopeptidase A, a novel aminopeptidase from the venom of Bitis gabonica rhinoceros. PLoS Negl Trop Dis. 2010;4(8):e796.   DOI
9 Kamiguti AS, Markland FS, Zhou Q, Laing GD, Theakston RD, Zuzel M. Proteolytic cleavage of the beta1 subunit of platelet alpha2beta1 integrin by the metalloproteinase jararhagin compromises collagen-stimulated phosphorylation of pp72. J Biol Chem. 1997;272(51):32599-605.   DOI
10 Yamazaki Y, Morita T. Structure and function of snake venom cysteine-rich secretory proteins. Toxicon. 2004;44(3):227-31.   DOI
11 Yamazaki Y, Morita T. Snake venom components affecting blood coagulation and the vascular system: structural similarities and marked diversity. Curr Pharm Des. 2007;13(28):2872-86.   DOI
12 Brown RL, Haley TL, West KA, Crabb JW. Pseudechetoxin: a peptide blocker of cyclic nucleotide-gated ion channels. Proc Natl Acad Sci U S A. 1999;96(2):754-9.   DOI
13 Koh DC, Armugam A, Jeyaseelan K. Snake venom components and their applications in biomedicine. Cell Mol Life Sci. 2006;63(24):3030-41.   DOI
14 Kini RM. Excitement ahead: structure, function and mechanism of snake venom phospholipase A2 enzymes. Toxicon. 2003;42(8):827-40.   DOI
15 Tasoulis T, Isbister G. A review and database of snake venom proteomes. Toxins (Basel). 2017;9(9):290.   DOI
16 Gutierrez JM, Lomonte B. Phospholipases A2: unveiling the secrets of a functionally versatile group of snake venom toxins. Toxicon. 2013;62:27-39.   DOI
17 Mashima T, Seimiya H, Tsuruo T. De novo fatty-acid synthesis and related pathways as molecular targets for cancer therapy. Br J Cancer. 2009;100(9):1369-72.   DOI
18 Ferguson EL, Richardson SC, Duncan R. Studies on the mechanism of action of dextrin-phospholipase A2 and its suitability for use in combination therapy. Mol Pharm. 2010;7(2):510-21.   DOI
19 Maity G, Mandal S, Chatterjee A, Bhattacharyya D. Purification and characterization of a low molecular weight multifunctional cytotoxic phospholipase A2 from Russell's viper venom. J Chromatogr B Analyt Technol Biomed Life Sci. 2007;845(2):232-43.   DOI
20 Rodrigues RS, da Silva JF, Boldrini Franca J, Fonseca FP, Otaviano AR, Henrique Silva F, et al. Structural and functional properties of Bp-LAAO, a new L-amino acid oxidase isolated from Bothrops pauloensis snake venom. Biochimie. 2009;91(4):490-501.   DOI
21 Markland FS. Snake venoms and the hemostatic system. Toxicon. 1998;36(12):1749-800.   DOI
22 Fry BG. Structure-function properties of venom components from Australian elapids. Toxicon. 1999;37(1):11-32.   DOI
23 Williams D, Gutierrez JM, Harrison R, Warrell DA, White J, Winkel KD, et al. The global snake bite initiative: an antidote for snake bite. Lancet. 2010;375(9708):89-91.   DOI
24 Chellapandi P. Structural, functional and therapeutic aspects of snake venom metalloproteinases. Mini Rev Org Chem. 2014;11(1):28-44.   DOI
25 Radding W, Corfield PW, Levinson LS, Hashim GA, Low BW. Alpha-toxin binding to acetylcholine receptor alpha 179-191 peptides: intrinsic fluorescence studies. FEBS Lett. 1988;231(1):212-6.   DOI
26 Dufton MJ, Hider RC. Conformational properties of the neurotoxins and cytotoxins isolated from Elapid snake venoms. CRC Crit Rev Biochem. 1983;14(2):113-71.   DOI
27 Basus VJ, Song G, Hawrot E. NMR solution structure of an alpha-bungarotoxin/nicotinic receptor peptide complex. Biochemistry. 1993;32(46):12290-8.   DOI
28 Tzartos SJ, Remoundos MS. Fine localization of the major alpha-bungarotoxin binding site to residues alpha 189-195 of the Torpedo acetylcholine receptor. Residues 189, 190, and 195 are indispensable for binding. J Biol Chem. 1990;265(35):21462-7.   DOI
29 Kini RM, Evans HJ. Mechanism of platelet effects of cardiotoxins from Naja nigricollis crawshawii (spitting cobra) snake venom. Thromb Res. 1988;52(3):185-95.   DOI
30 Hinman C, Lepisto E, Stevens R, Montgomery I, Rauch H, Hudson R. Effects of cardiotoxin D from Naja naja siamensis snake venom upon murine splenic lymphocytes. Toxicon. 1987;25(9):1011-4.   DOI
31 Igari R, Iseki K, Abe S, Syoji M, Sato M, Shimomura K, et al. [Binocular diplopia and ptosis due to snakebite (Agkistrodon blomhoffi "mamushi")--a case report]. Brain Nerve. 2010;62(3):273-7.
32 Yamazaki Y, Koike H, Sugiyama Y, Motoyoshi K, Wada T, Hishinuma S, et al. Cloning and characterization of novel snake venom proteins that block smooth muscle contraction. Eur J Biochem. 2002;269(11):2708-15.   DOI
33 Markland FS Jr, Swenson S. Snake venom metalloproteinases. Toxicon. 2013;62:3-18.   DOI
34 Sakurai Y, Shima M, Matsumoto T, Takatsuka H, Nishiya K, Kasuda S, et al. Anticoagulant activity of M-LAO, L-amino acid oxidase purified from Agkistrodon halys blomhoffii, through selective inhibition of factor IX. Biochim Biophys Acta. 2003;1649(1):51-7.   DOI
35 Sanchez EF, Bush LR, Swenson S, Markland FS. Chimeric fibrolase: covalent attachment of an RGD-like peptide to create a potentially more effective thrombolytic agent. Thromb Res. 1997;87(3):289-302.   DOI
36 Cummings BS. Phospholipase A2 as targets for anti-cancer drugs. Biochem Pharmacol. 2007;74(7):949-59.   DOI
37 Roberto PG, Kashima S, Marcussi S, Pereira JO, Astolfi-Filho S, Nomizo A, et al. Cloning and identification of a complete cDNA coding for a bactericidal and antitumoral acidic phospholipase A2 from Bothrops jararacussu venom. Protein J. 2004;23(4):273-85.   DOI
38 Chong HP, Tan KY, Tan CH. Cytotoxicity of snake venoms and cytotoxins from two Southeast Asian cobras (Naja sumatrana , Naja kaouthia ): exploration of anticancer potential, selectivity, and cell death mechanism. Front Mol Biosci. 2020;7:583587.   DOI
39 Conti-Tronconi BM, Diethelm BM, Wu XD, Tang F, Bertazzon T, Schroder B, et al. Alpha-bungarotoxin and the competing antibody WF6 interact with different amino acids within the same cholinergic subsite. Biochemistry. 1991;30(10):2575-84.   DOI
40 Grognet JM, Menez A, Drake A, Hayashi K, Morrison IE, Hider RC. Circular dichroic spectra of elapid cardiotoxins. Eur J Biochem. 1988;172(2):383-8.   DOI
41 Fox JW, Serrano SM. Timeline of key events in snake venom metalloproteinase research. J Proteomics. 2009;72(2):200-9.   DOI
42 Fox JW, Serrano SM. Structural considerations of the snake venom metalloproteinases, key members of the M12 reprolysin family of metalloproteinases. Toxicon. 2005;45(8):969-85.   DOI
43 Gutierrez J, Rucavado A. Snake venom metalloproteinases: their role in the pathogenesis of local tissue damage. Biochimie. 2000;82(9-10):841-50.   DOI
44 Estevao-Costa MI, Diniz CR, Magalhaes A, Markland FS, Sanchez EF. Action of metalloproteinases mutalysin I and II on several components of the hemostatic and fibrinolytic systems. Thromb Res. 2000;99(4):363-76.   DOI
45 Takechi M, Tanaka Y, Hayashi K. Binding of cardiotoxin analogue III from Formosan cobra venom to FL cells. FEBS Lett. 1986;205(1):143-6.   DOI
46 Sajevic T, Leonardi A, Krizaj I. Haemostatically active proteins in snake venoms. Toxicon. 2011;57(5):627-45.   DOI
47 Calderon LA, Sobrinho JC, Zaqueo KD, de Moura AA, Grabner AN, Mazzi MV, et al. Antitumoral activity of snake venom proteins: new trends in cancer therapy. Biomed Res Int. 2014;2014:203639.   DOI
48 Araya C, Lomonte B. Antitumor effects of cationic synthetic peptides derived from Lys49 phospholipase A2 homologues of snake venoms. Cell Biol Int. 2007;31(3):263-8.   DOI
49 Kessentini-Zouari R, Jebali J, Taboubi S, Srairi-Abid N, Morjen M, Kallech-Ziri O, et al. CC-PLA2-1 and CC-PLA2-2, two Cerastes cerastes venom-derived phospholipases A2, inhibit angiogenesis both in vitro and in vivo. Lab Invest. 2010;90(4):510-9.   DOI
50 Morita T. Structures and functions of snake venom CLPs (C-type lectin-like proteins) with anticoagulant-, procoagulant-, and platelet-modulating activities. Toxicon. 2005;45(8):1099-114.   DOI
51 Sunagar K, Johnson WE, O'Brien SJ, Vasconcelos V, Antunes A. Evolution of CRISPs associated with toxicoferan-reptilian venom and mammalian reproduction. Mol Biol Evol. 2012;29(7):1807-22.   DOI
52 Kunalan S, Othman I, Syed Hassan S, Hodgson W. Proteomic characterization of two medically important Malaysian snake venoms, Calloselasma rhodostoma (Malayan Pit Viper) and Ophiophagus hannah (King Cobra). Toxins (Basel). 2018;10(11):434.   DOI
53 Clemetson KJ. Snaclecs (snake C-type lectins) that inhibit or activate platelets by binding to receptors. Toxicon. 2010;56(7):1236-46.   DOI