Browse > Article
http://dx.doi.org/10.3831/KPI.2020.23.3.158

Evaluation Potential Antidiabetic Effects of Ferula latisecta in Streptozotocin-Induced Diabetic Rats  

Javanshir, Sajad (Student Research Committee, School of Dentistry, Mashhad University of Medical Sciences)
Soukhtanloo, Mohammad (Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences)
Jalili-Nik, Mohammad (Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences)
Yazdi, Amirali Jahani (Department of Laboratory Sciences, School of Paramedical Sciences, Mashhad University of Medical Sciences)
Amiri, Mohammad Sadegh (Department of Biology, Payame Noor University)
Ghorbani, Ahmad (Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences)
Publication Information
Journal of Pharmacopuncture / v.23, no.3, 2020 , pp. 158-164 More about this Journal
Abstract
Objectives: The aim of the present work was to evaluate the possible beneficial effects of F. latisecta on blood glucose, lipids, and diabetes-related changes in the liver and kidney of streptozotocin-induced diabetic rats. Methods: Male Wistar rats were randomly allocated into four groups (n = 6): normal control rats, diabetic control rats, diabetic rats treated for 4 weeks with F. latisecta root (400 mg/kg/day), and diabetic rats treated with F. latisecta aerial parts (400 mg/kg/day). Results: Induction of diabetes significantly (p < 0.05) increased the levels of fasting blood glucose (FBG), triglyceride, total cholesterol, low-density lipoprotein (LDL), blood urea nitrogen (BUN), aspartate aminotransferase (AST), and alanine aminotransferase (ALT). Diabetes also increased (p < 0.05) oxidative stress in the kidney and liver (decrease of thiol and increase of superoxide dismutase). The root and aerial parts of F. latisecta significantly reduced the level of LDL (p < 0.05) and restored the content of thiol (p < 0.05) and superoxide dismutase (p < 0.01) in the kidney and liver. F. latisecta had no significant effect on the levels of FBG, BUN, AST, and ALT. The root of F. latisecta also reduced the serum level of total cholesterol (p < 0.05) and prevented the progression of hyperglycemia. Conclusion: These findings suggest that F. latisecta may improve diabetic dyslipidemia by reducing serum LDL. Further studies are needed to confirm our findings.
Keywords
diabetes; Ferula; glucose; lipids; oxidative stress;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Abu-Zaiton AS. Anti-diabetic activity of Ferula assafoetida extract in normal and alloxan-induced diabetic rats. Pak J Biol Sci. 2010;13(2):97-100.   DOI
2 Hedaya MA, Hegazy SK, Salem KA, El-Kawy KSA. Evaluation of the clinical effect of Zallouh extract (Ferula hermonis) on diabetic patients with erectile dysfunction. J Pan Arab Leag Dermatol. 2007;18(1):17-26.
3 Raafat K, El-Lakany A. Acute and subchronic in-vivo effects of Ferula hermonis L. and Sambucus nigra L. and their potential active isolates in a diabetic mouse model of neuropathic pain. BMC Complement Altern Med. 2015;15:257.   DOI
4 Naguib YMA, inventor; Herbal compositions and methods for diabetes and weight loss management. United States patent US 6,780,440. 2004 Aug 24.
5 Mozaffarian V. Identification of medicinal and aromatic plants of Iran. Tehran: Farhang Moaser Publishers; 2013. 1350 p.
6 Amiri MS, Joharchi MR. Ethnobotanical knowledge of Apiaceae family in Iran: a review. Avicenna J Phytomed. 2016;6(6):621-35.
7 Habibi Z, Salehi P, Yousefi M, Hejazi Y, Laleh A, Mozaffarian V, et al. Chemical composition and antimicrobial activity of the essential oils of Ferula latisecta and Mozaffariania insignis from Iran. Chem Nat Compd. 2006;42(6):689-92.   DOI
8 Iranshahi M, Hassanzadeh-Khayat M, Bazzaz BSF, Sabeti Z, Enayati F. High content of polysulphides in the volatile oil of Ferula latisecta Rech. F. et Aell. fruits and antimicrobial activity of the oil. J Essent Oil Res. 2008;20(2):183-5.   DOI
9 Reagan-Shaw S, Nihal M, Ahmad N. Dose translation from animal to human studies revisited. FASEB J. 2008;22(3):659-61.   DOI
10 Jalili-Nik M, Soukhtanloo M, Javanshir S, Jahani Yazdi A, Esmaeilizadeh M, Jafarian AH, et al. Effects of ethanolic extract of Ferula gummosa oleo-resin in a rat model of streptozotocininduced diabetes. Res Pharm Sci. 2019;14(2):138-45.   DOI
11 Hosseini A, Mollazadeh H, Amiri MS, Sadeghnia HR, Ghorbani A. Effects of a standardized extract of Rheum turkestanicum Janischew root on diabetic changes in the kidney, liver and heart of streptozotocin-induced diabetic rats. Biomed Pharmacother. 2017;86:605-11.   DOI
12 Madesh M, Balasubramanian KA. Microtiter plate assay for superoxide dismutase using MTT reduction by superoxide. Indian J Biochem Biophys. 1998;35(3):184-8.
13 Iranshahi M, Amanolahi F, Schneider B. New sesquiterpene coumarin from the roots of Ferula latisecta. Avicenna J Phytomed. 2012;2(3):133-8.
14 Szkudelski T. The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol Res. 2001;50(6):537-46.
15 Vijayaraghavan K. Treatment of dyslipidemia in patients with type 2 diabetes. Lipids Health Dis. 2010;9(1):144.   DOI
16 Okon UA, Owo DU, Udokang NE, Udobang JA, Ekpenyong CE. Oral administration of aqueous leaf extract of Ocimum gratissimum ameliorates polyphagia, polydipsia andweight loss in streptozotocin-induced diabetic rats. Am J Med Med Sci. 2012;2(3):45-9.   DOI
17 de Moura Barbosa H, Amaral D, do Nascimento JN, Machado DC, de Sousa Araujo TA, de Albuquerque UP, et al. Spondias tuberosa inner bark extract exert antidiabetic effects in streptozotocin-induced diabetic rats. J Ethnopharmacol. 2018;227:248-57.   DOI
18 Viljoen A, Joshi S, Wierzbicki AS. Diabetic dyslipidemia and risk of cardiovascular disease. In: Holt RIG, Cockram CS, Flyvbjerg A, Goldstein BJ, editors. Textbook of diabetes. 5th ed. Chichester: Wiley Blackwell; 2017. p. 643-52.
19 Egede LE, Ye X, Zheng D, Silverstein MD. The prevalence and pattern of complementary and alternative medicine use in individuals with diabetes. Diabetes Care. 2002;25(2):324-9.   DOI
20 Dake AW, Sora ND. Diabetic dyslipidemia review: an update on current concepts and management guidelines of diabetic dyslipidemia. Am J Med Sci. 2016;351(4):361-5.   DOI
21 Karalis DG. The role of lipid-lowering therapy in preventing coronary heart disease in patients with type 2 diabetes. Clin Cardiol. 2008;31(6):241-8.   DOI
22 Shafiee-Nick R, Ghorbani A, Vafaee Bagheri F, Rakhshandeh H. Chronic administration of a combination of six herbs inhibits the progression of hyperglycemia and decreases serum lipids and aspartate amino transferase activity in diabetic rats. Adv Pharmacol Sci. 2012;2012:789796.   DOI
23 Tashakori-Sabzevar F, Ramezani M, Hosseinzadeh H, Parizadeh SM, Movassaghi AR, Ghorbani A, et al. Protective and hypoglycemic effects of celery seed on streptozotocin-induced diabetic rats: experimental and histopathological evaluation. Acta Diabetol. 2016;53(4):609-19.   DOI
24 Hosseini A, Shafiee-Nick R, Ghorbani A. Pancreatic beta cell protection/regeneration with phytotherapy. Braz J Pharm Sci. 2015;51(1):1-16.
25 Kim YS, Chun JH, Park JH, Kang CI. Status and associating factors of complementary and altemative medicine among Korean diabetic patients. J Korean Diabetes Assoc. 2000;24(1):78-89.
26 Lee MS, Lee MS, Lim HJ, Moon SR. Survey of the use of complementary and alternative medicine among Korean diabetes mellitus patients. Pharmacoepidemiol Drug Saf. 2004;13(3):167-71.   DOI
27 Ghorbani A. Best herbs for managing diabetes: a review of clinical studies. Braz J Pharm Sci. 2013;49(3):413-22.   DOI
28 Prabhakar PK, Doble M. Mechanism of action of natural products used in the treatment of diabetes mellitus. Chin J Integr Med. 2011;17(8):563-74.   DOI
29 Forlani G, Di Bonito P, Mannucci E, Capaldo B, Genovese S, Orrasch M, et al. Prevalence of elevated liver enzymes in Type 2 diabetes mellitus and its association with the metabolic syndrome. J Endocrinol Invest. 2008;31(2):146-52.   DOI
30 Malenica M, Prnjavorac B, Causevic A, Dujic T, Bego T, Semiz S. Use of databases for early recognition of risk of diabetic complication by analysis of liver enzymes in Type 2 diabetes mellitus. Acta Inform Med. 2016;24(2):90-3.   DOI
31 Ghorbani A. Mechanisms of antidiabetic effects of flavonoid rutin. Biomed Pharmacother. 2017;96:305-12.   DOI
32 Afifi-Yazar FU, Kasabri V, Abu-Dahab R. Medicinal plants from Jordan in the treatment of diabetes: traditional uses vs. in vitro and in vivo evaluations--part 2. Planta Med. 2011;77(11):1210-20.   DOI
33 Otoom SA, Al-Safi SA, Kerem ZK, Alkofahi A. The use of medicinal herbs by diabetic Jordanian patients. J Herb Pharmacother. 2006;6(2):31-41.   DOI
34 Yaseen G, Ahmad M, Zafar M, Sultana S, Kayani S, Cetto AA, et al. Traditional management of diabetes in Pakistan: ethnobotanical investigation from Traditional Health Practitioners. J Ethnopharmacol. 2015;174:91-117.   DOI
35 Azizian H, Ebrahim Rezvani M, Esmaeilidehaj M, Bagheri SM. Anti-obesity, fat lowering and liver steatosis protective effects of ferula asafoetida gum in type 2 diabetic rats: possible involvement of leptin. Iran J Diabetes Obes. 2012;4(3):120-6.
36 Vozarova B, Stefan N, Lindsay RS, Saremi A, Pratley RE, Bogardus C, et al. High alanine aminotransferase is associated with decreased hepatic insulin sensitivity and predicts the development of type 2 diabetes. Diabetes. 2002;51(6):1889-95.   DOI
37 Schindhelm RK, Diamant M, Dekker JM, Tushuizen ME, Teerlink T, Heine RJ. Alanine aminotransferase as a marker of non-alcoholic fatty liver disease in relation to type 2 diabetes mellitus and cardiovascular disease. Diabetes Metab Res Rev. 2006;22(6):437-43.   DOI