Browse > Article
http://dx.doi.org/10.3831/KPI.2019.22.012

Beneficial Cardiovascular Effects Of Hydroalcoholic Extract From Crocus Sativus In Hypertension Induced By Angiotensin II  

Plangar, Abdolali Faramarzi (Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences)
Anaeigoudari, Akbar (Department of Physiology, School of Medicine, Jiroft University of Medical Sciences)
KhajaviRad, Abolfazl (Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences)
Shafei, Mohammad Naser (Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences)
Publication Information
Journal of Pharmacopuncture / v.22, no.2, 2019 , pp. 95-101 More about this Journal
Abstract
Objectives: Angiotensin II (AngII), a major product of renin-angiotensin system (RAS) has important role in induction of hypertension and antihypertensive effect of several medicinal plant was mediated by effect on this agent. Therefore, this study examined the possible effect of hydroalcoholic extract of Crocus sativus (C. sativus) on hypertension induced by AngII. Methods: Six groups (n = 6) of rats were used as follow: 1) Control, 2) AngII (300 ng/kg), 3) Losartan (Los, 10 mg/kg) + AngII and 4-6) C. sativus extract (10, 20 & 40 mg/kg,) + AngII. The femoral artery and vein were cannulated for recording cardiovascular parameters and drugs administration, respectively. All drugs were injected intravenously (i.v). Los and all doses of C. sativus injected 10 min before AngII. Systolic blood pressure (SBP), mean arterial blood pressure (MAP) and heart rate (HR) were recorded throughout the experiment and those peak changes (${\Delta}$) were calculated and compared to control and AngII. Results: AngII significantly increased ${\Delta}MAP$, ${\Delta}SBP$ and ${\Delta}HR$ than control (P < 0. 01 to P < 0.001) and these increments were significantly attenuated by Los. All doses of C. sativus significantly reduced peak ${\Delta}MAP$, ${\Delta}SBP$, and ${\Delta}HR$ than AngII group (P < 0. 05 to P < 0.001). In addition, peak ${\Delta}MAP$, ${\Delta}SBP$ in doses 10 and 20 were significant than Los + AngII group (P<0.05 to P< 0.01) but in dose 40 only MAP was significant (P<0.05). Peak ${\Delta}HR$ in all doses of C sativus was not significant than Los+ AngII. Conclusion: Regarding the improving effect of the C. sativus extract on AngII induced hypertension, it seems that this ameliorating effect partly mediated through inhibition of RAS.
Keywords
angiotensin II; crocus sativus; hypertension; blood pressure; heart rate;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Zheng S, Qian Z, Wen N, Xi L. Crocetin suppresses angiotensin II-induced vascular smooth-muscle cell proliferation through inhibition of ERK1/2 activation and cell-cycle progression. J Cardiovasc Pharmacol. 2007;50(5):519-525.   DOI
2 Imenshahidi M, Razavi BM, Faal A, Gholampoor A, Mousavi SM, Hosseinzadeh H. The effect of chronic administration of safranal on systolic blood pressure in rats. Iran J Pharm Res. 2015;14(2):585.
3 Schulman IH, Zhou M-S, Raij L. Interaction between nitric oxide and angiotensin II in the endothelium: role in atherosclerosis and hypertension. J Hypertens. 2006;24:S45-S50.   DOI
4 Landmesser U, Cai H, Dikalov S, McCann L, Hwang J, Jo H, et al. Role of p47phox in vascular oxidative stress and hypertension caused by angiotensin II. Hypertension. 2002;40(4):511-515.   DOI
5 Nickenig G, Harrison DG. The AT1-type angiotensin receptor in oxidative stress and atherogenesis: part II:AT1 receptor regulation. Circulation. 2002;105(4):530-536.   DOI
6 Stegbauer J, Lee D-H, Seubert S, Ellrichmann G, Manzel A, Kvakan H, et al. Role of the renin-angiotensin system in autoimmune inflammation of the central nervous system. Proc Natl Acad Sci. 2009;106(35):14942-14947.   DOI
7 Muller DN, Shagdarsuren E, Park J-K, Dechend R, Mervaala E, Hampich F, et al. Immunosuppressive treatment protects against angiotensin II-induced renal damage. Am J Pathol. 2002;161(5):1679-1693.   DOI
8 Guzik TJ, Hoch NE, Brown KA, McCann LA, Rahman A, Dikalov S, et al. Role of the T cell in the genesis of angiotensin II-induced hypertension and vascular dysfunction. J Exp Med. 2007;204(10):2449-2460.   DOI
9 Xie Y, Zhang W. Antihypertensive activity of Rosa rugosa Thunb. flowers: angiotensin I converting enzyme inhibitor. J Ethnopharmacol. 2012;144(3):562-566.   DOI
10 Sliwa K, Stewart S, Gersh BJ. Hypertension: a global perspective. Circulation. 2011;123(24):2892-2896.   DOI
11 Moraes PL, Kangussu LM, Silva LG, Castro CH, Santos RA, Ferreira AJ. Cardiovascular effects of small peptides of the renin angiotensin system. Physiol Rep. 2017;5(22):e13505.   DOI
12 Navar LG, Prieto MC, Satou R, Kobori H. Intrarenal angiotensin II and its contribution to the genesis of chronic hypertension. Curr Opin Pharm. 2011;11(2):180-186.   DOI
13 Xue H, Lu Z, Tang W, Pang L, Wang G, Wong G, et al. First-line drugs inhibiting the renin angiotensin system versus other first-line antihypertensive drug classes for hypertension. Cochrane Database Syst Rev. 2018;2018(11):CD008170.
14 Shafei MN, Faramarzi A, Rad AK, Anaeigoudari A. Crocin prevents acute angiotensin II-induced hypertension in anesthetized rats. Avicenna J Phytomed. 2017;7(4):345.
15 Peng F, Lin J, Lin L, Tang H. Transient prehypertensive treatment in spontaneously hypertensive rats: A comparison of losartan and amlodipine regarding longterm blood pressure, cardiac and renal protection. Int J Mol Med. 2012;30(6):1376-1386.   DOI
16 Hilzendeger AM, Morgan DA, Brooks L, Dellsperger D, Liu X, Grobe JL, et al. A brain leptin-renin angiotensin system interaction in the regulation of sympathetic nerve activity. Am J Physiol Heart Circ Physiol. 2012;303(2):H197-H206.   DOI
17 Wang T, Lian G, Cai X, Lin Z, Xie L. Effect of prehypertensive losartan therapy on AT1R and ATRAP methylation of adipose tissue in the later life of high-fat-fed spontaneously hypertensive rats. Mol Med Report. 2018;17(1):1753-1761.
18 Ghods R, Gharouni M, Amanlou M, Sharifi N, Ghobadi A, Amin G. Effect of Onopordon acanthium L. as Add on Antihypertensive Therapy in Patients with Primary Hypertension Taking Losartan: a Pilot Study. Adv Pharm Bull. 2018;8(1):69.   DOI
19 Tsunoda K, Abe K, Hagino T, Omata K, Misawa S, Imai Y, et al. Hypotensive effect of losartan, a nonpeptide angiotensin II receptor antagonist, in essential hypertension. Am J Hypertens. 1993;6(1):28-32.   DOI
20 Ylitalo A, Airaksinen KJ, Hautanen A, Kupari M, Carson M, Virolainen J, et al. Baroreflex sensitivity and variants of the renin angiotensin system genes. J Am Coll Cardiol. 2000;35(1):194-200.   DOI
21 Serrano-Diaz J, Sanchez AM, Martinez-Tome M, Winterhalter P, Alonso GL. A contribution to nutritional studies on Crocus sativus flowers and their value as food. J Food Compost Anal. 2013;31(1):101-108.   DOI
22 Bhargava V. Medicinal uses and pharmacological properties of Crocus sativus linn (saffron). Int J Pharm Pharm Sci. 2011;3(Suppl 3):22-26.
23 Jose Bagur M, Alonso Salinas GL, Jimenez-Monreal AM, Chaouqi S, Llorens S, Martinez-Tome M, et al. Saffron: An Old Medicinal Plant and a Potential Novel Functional Food. Molecules. 2017;23(1):30.   DOI
24 Wang Y, Sun J, Liu C, Fang C. Protective effects of crocetin pretreatment on myocardial injury in an ischemia/reperfusion rat model. Eur J Pharmacol. 2014;741:290-296.   DOI
25 Imenshahidi M, Hosseinzadeh H, Javadpour Y. Hypotensive effect of aqueous saffron extract (Crocus sativus L.) and its constituents, safranal and crocin, in normotensive and hypertensive rats. Phytother Res. 2010;24(7):990-994.   DOI
26 Shafei MN, Nasimi A. Effect of glutamate stimulation of the cuneiform nucleus on cardiovascular regulation in anesthetized rats: Role of the pontine Kolliker-Fuse nucleus. Brain Res. 2011;1385:135-143.   DOI
27 Crowley SD, Gurley SB, Herrera MJ, Ruiz P, Griffiths R, Kumar AP, et al. Angiotensin II causes hypertension and cardiac hypertrophy through its receptors in the kidney. Proc Natl Acad Sci. 2006;103(47):17985-17990.   DOI
28 Nasimi A, Shafei M, Alaei H. Glutamate injection into the cuneiform nucleus in rat, produces correlated single unit activities in the Kolliker-Fuse nucleus and cardiovascular responses. Neuroscience. 2012;223:439-446.   DOI
29 Mehta PK, Griendling KK. Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system. American Journal of Physiology-Cell Physiology. 2007;292(1):C82-C97.   DOI
30 Touyz RM, Schiffrin EL. Signal transduction mechanisms mediating the physiological and pathophysiological actions of angiotensin II in vascular smooth muscle cells. Pharmacol Rev. 2000;52(4):639-672.
31 Enayatfard L, Mohebbati R, Niazmand S, Hosseini M, Shafei MN. The standardized extract of Nigella sativa and its major ingredient, thymoquinone, ameliorates angiotensin II-induced hypertension in rats. J Basic Clin Physiol Pharmacol. 2018;30(1):51-58.   DOI
32 Srivastava R, Ahmed H, Dixit R. Crocus sativus L.: a comprehensive review. Pharmacogn Rev. 2010;4(8):200.   DOI
33 Mehdizadeh R, Parizadeh MR, Khooei A-R, Mehri S, Hosseinzadeh H. Cardioprotective effect of saffron extract and safranal in isoproterenol-induced myocardial infarction in wistar rats. Iran J Basic Med Sci. 2013;16(1):56.
34 Bountagkidou O, van der Klift EJ, Tsimidou MZ, Ordoudi SA, van Beek TA. An on-line high performance liquid chromatography-crocin bleaching assay for detection of antioxidants. J Chromatogr. 2012;1237:80-85.   DOI
35 Assimopoulou A, Sinakos Z, Papageorgiou V. Radical scavenging activity of Crocus sativus L. extract and its bioactive constituents. Phytother Res. 2005;19(11):997-1000.   DOI
36 Zheng Y-Q, Liu J-X, Wang J-N, Xu L. Effects of crocin on reperfusion-induced oxidative/nitrative injury to cerebral microvessels after global cerebral ischemia. Brain Res. 2007;1138:86-94.   DOI